On the differentiation of integrals in measure spaces along filters: II (2404.13157v1)
Abstract: Let $X$ be a complete measure space of finite measure. The Lebesgue transform of an integrable function $f$ on $X$ encodes the collection of all the mean-values of $f$ on all measurable subsets of $X$ of positive measure. In the problem of the differentiation of integrals, one seeks to recapture $f$ from its Lebesgue transform. In previous work we showed that, in all known results, $f$ may be recaputed from its Lebesgue transform by means of a limiting process associated to an appropriate family of filters defined on the collection of all measurable subsets of $X$ of positive measure. The first result of the present work is that the existence of such a limiting process is equivalent to the existence of a Von Neumann-Maharam lifting of $X$. In the second result of this work we provide an independent argument that shows that the recourse to filters is a \textit{necessary consequence} of the requirement that the process of recapturing $f$ from its mean-values is associated to a \textit{natural transformation}, in the sense of category theory. This result essentially follows from the Yoneda lemma. As far as we know, this is the first instance of a significant interaction between category theory and the problem of the differentiation of integrals. In the Appendix we have proved, in a precise sense, that \textit{natural transformations fall within the general concept of homomorphism}. As far as we know, this is a novel conclusion: Although it is often said that natural transformations are homomorphisms of functors, this statement appears to be presented as a mere analogy, not in a precise technical sense. In order to achieve this result, we had to bring to the foreground a notion that is implicit in the subject but has remained hidden in the background, i.e., that of \textit{partial magma}.
- On essentially algebraic theories and their generalizations. Algebra universalis. 41, 213–227 (1999).
- Approach regions for trees and the unit disc. Journal für die reine und angewandte Mathematik, vol. 1996, no. 472, 1996, pp. 157-176.
- A. Blass. The interaction between category theory and set theory. Contemporary Mathematics, 30, 5-29 (1984).
- N. Bourbaki. Algèbre. Chapitres 1–3. Springer, Berlin, 2007.
- N. Bourbaki. Foundations of Mathematics for the Working Mathematician. The Journal of Symbolic Logic 14, 1-8 (1949).
- N. Bourbaki. General Topology. Chapters 1–4. Springer, Berlin 1995.
- A. M. Bruckner. Differentiation of Integrals. The American Mathematical Monthly, vol. 78, no. 9, 1971, pp. i–51.
- E. Chirka. The theorems of Lindelöf and Fatou in ℂnsuperscriptℂ𝑛{\mathbb{C}}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Mat. Sb. 92 (1973), 622–644.
- M. De Guzman. Differentiation of Integrals in ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Springer, Berlin, 1975.
- M. De Guzman. Real Variables Methods in Fourier Analysis. North-Holland, Amsterdam, 1981.
- R. De Possel. Sur la dérivation abstraite des fonctions d’ensemble. J. Math Pure Appl. (1936), 391–409.
- F. Di Biase. Fatou Type Theorems. Maximal Functions and Approach Regions. Birkhäuser, Boston, 1998.
- F. Di Biase. True or False? A Case in the Study of Harmonic Functions. Topoi 28, 143–160 (2009). doi.org/10.1007/s11245-009-9059-2
- F. Di Biase and B. Fischer. Boundary behaviour of Hpsuperscript𝐻𝑝H^{p}italic_H start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT functions on convex domains of finite type in ℂnsuperscriptℂ𝑛{\mathbb{C}}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Pacific J. Math. 183 (1998), 25–38.
- Foundations of Fatou Theory and a Tribute to the Work of E. M. Stein on Boundary Behavior of Holomorphic Functions. J. Geom. Anal. 31, 7184–7296 (2021).
- On the Differentiation of Integrals in Measure Spaces Along Filters. J. Geom. Anal. 33, 29 (2023). https://doi.org/10.1007/s12220-022-01050-7
- On the Sharpness of the Stolz Approach Ann Acad Sci Fenn Mat 31 (2006) 47–59
- S. Eilenberg and S. MacLane. General Theory of Natural Equivalences. Trans. Amer. Math. Soc. 58 (2), 231-294 (1945).
- P. Fatou. Series trigonometriques et series de Taylor. Acta Math. 30 (1906), 335–400.
- D.H. Fremlin. Measure Theory. Volume 1 ( Second Edition) Torres Fremlin, 2011.
- D.H. Fremlin. Measure Theory. Volume 3. Torres Fremlin, 2002.
- G. Grätzer. Universal Algebra. Van Nostrand, Princeton, 1968.
- Differential- und Integralrechnung unter besonderer Berücksichtigung neuerer Ergebnisse. Bd. III. Integralrechnung. 2te Aufl. Walter de Gruyter & Co., Berlin, 1955.
- A. Ionescu Tulcea and C. Ionescu Tulcea. On the lifting Property (I). J. Math. Anal. Appl. 3, 537-546 (1961).
- A. Ionescu Tulcea and C. Ionescu Tulcea. Topics in the Theory of Lifting. Springer, Berlin, 1969.
- A. Jamneshan, T. Tao Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration. arXiv:2010.00681v3
- P.T. Johnstone. Notes on Logic and Set Theories. Cambridge University Press, Cambridge, 1987.
- A. Korányi. Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc. 135 (1969), 507–516.
- D. Kölzow. Differentiation und Maßen Springer, Berlin, 1968.
- S. G. Krantz. Invariant metrics and the boundary behavior of holomorphic functions on domains in ℂnsuperscriptℂ𝑛{\mathbb{C}}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Geom. Anal. 1 (1991), 71–97.
- S. G. Krantz. Function Theory of Several Complex Variables American Mathematical Society, Providence, 2001.
- S. G. Krantz. The boundary behavior of holomorphic functions: global and local results. Asian J. Math. 11 (2007), 179–199.
- F. William Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the context of Functorial Semantics of Algebraic Theories. Ph.D. Thesis, Columbia University, 1963. Available at http://www.tac.mta.ca/tac/reprints/articles/5/tr5.pdf
- D. Lučić and E. Pasqualetto. The metric-valued Lebesgue differentiation theorem in measure spaces and its applications. Adv. Oper. Theory 8, 32 (2023).
- S. Mac Lane and G. Birkhoff. Algebra. Third Edition. AMS Chelsea Publishing, 1999.
- S. Mac Lane. Categories for the Working Mathematicians. Second Edition. Springer-Verlag, Berlin, 1978.
- D. Maharam. On a theorem of Von Neumann Proceedings of the American Mathematical Society Vol. 9, No. 6 (Dec., 1958), pp. 987-994.
- Yu. I. Manin. A Course in Mathematical Logic for Mathematicians. Second Edition. With collaboration by B. Zilber. Springer, New York, 2010.
- B. McLean. Algebras of multiplace functions for signatures containing antidomain. Algebra Universalis 78 (2017): 215-248.
- A. Nagel and E. M. Stein. On certain maximal functions and approach regions. Adv. Math. 54 (1984), 83–106.
- V. Poythress. Partial Morphisms on Partial Algebras. Algebra Universalis 3/2 (1973): 182-202.
- H. L. Royden. Real Analysis. Second Edition. The Macmillan Company, London, 1968.
- W. Rudin. Inner function images of radii. Math. Proc. Cambridge. Philos. Soc. 85 (1979), 357–360
- J.-P. Serre. Lie Algebras and Lie Groups. 1964 Lectures Given at Harvard University. W.A. Benjamin, New York, 1965.
- S. Shelah. Lifting problem of the measure algebra. Israel J. Math. 45, 90–96 (1983). doi.org/10.1007/BF02760673
- E. M. Stein. Singular Integrals and Differentiability Properties of Functions Princeton University Press, Princeton, 1970.
- E. M. Stein. Boundary Behavior of Holomorphic Functions of Several Complex Variables Princeton University Press, Princeton, 1972.
- E. M. Stein. and G. Weiss Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, 1971.
- Tao, T. Yoneda’s lemma as an identification of form and function: the case study of polynomials. What’s new. (terrytao.wordpress.com). terrytao.wordpress.com/2023/08/25/yonedas-lemma-as-an-identification-of-form-and-function-the-case-study-of-polynomials Accessed December 12, 2023.
- T. Traynor. An elementary proof of the lifting theorem. Pacific Journal of Mathematics Vol. 53 No. 1 (1974), 267-272.
- D. van Dalen. Logic and Structure. Second Edition. Springer, Berlin, 1983.
- J. Von Neumann. Algebraische Repräsentanten der Funktionen “bis auf eine Menge vom Maß Null” Journal für die reine und angewandte Mathematik 165 (1931): 109-115. http://eudml.org/doc/149773
- J. von Neumann and M. Stone. The determination of representative elements in the residual classes of a Boolean algebra. Fundamenta Mathematicae 25 (1935), 353-378.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.