Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the differentiation of integrals in measure spaces along filters: II (2404.13157v1)

Published 19 Apr 2024 in math.FA and math.CT

Abstract: Let $X$ be a complete measure space of finite measure. The Lebesgue transform of an integrable function $f$ on $X$ encodes the collection of all the mean-values of $f$ on all measurable subsets of $X$ of positive measure. In the problem of the differentiation of integrals, one seeks to recapture $f$ from its Lebesgue transform. In previous work we showed that, in all known results, $f$ may be recaputed from its Lebesgue transform by means of a limiting process associated to an appropriate family of filters defined on the collection of all measurable subsets of $X$ of positive measure. The first result of the present work is that the existence of such a limiting process is equivalent to the existence of a Von Neumann-Maharam lifting of $X$. In the second result of this work we provide an independent argument that shows that the recourse to filters is a \textit{necessary consequence} of the requirement that the process of recapturing $f$ from its mean-values is associated to a \textit{natural transformation}, in the sense of category theory. This result essentially follows from the Yoneda lemma. As far as we know, this is the first instance of a significant interaction between category theory and the problem of the differentiation of integrals. In the Appendix we have proved, in a precise sense, that \textit{natural transformations fall within the general concept of homomorphism}. As far as we know, this is a novel conclusion: Although it is often said that natural transformations are homomorphisms of functors, this statement appears to be presented as a mere analogy, not in a precise technical sense. In order to achieve this result, we had to bring to the foreground a notion that is implicit in the subject but has remained hidden in the background, i.e., that of \textit{partial magma}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. On essentially algebraic theories and their generalizations. Algebra universalis. 41, 213–227 (1999).
  2. Approach regions for trees and the unit disc. Journal für die reine und angewandte Mathematik, vol. 1996, no. 472, 1996, pp. 157-176.
  3. A. Blass. The interaction between category theory and set theory. Contemporary Mathematics, 30, 5-29 (1984).
  4. N. Bourbaki. Algèbre. Chapitres 1–3. Springer, Berlin, 2007.
  5. N. Bourbaki. Foundations of Mathematics for the Working Mathematician. The Journal of Symbolic Logic 14, 1-8 (1949).
  6. N. Bourbaki. General Topology. Chapters 1–4. Springer, Berlin 1995.
  7. A. M. Bruckner. Differentiation of Integrals. The American Mathematical Monthly, vol. 78, no. 9, 1971, pp. i–51.
  8. E. Chirka. The theorems of Lindelöf and Fatou in ℂnsuperscriptℂ𝑛{\mathbb{C}}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Mat. Sb. 92 (1973), 622–644.
  9. M. De Guzman. Differentiation of Integrals in ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Springer, Berlin, 1975.
  10. M. De Guzman. Real Variables Methods in Fourier Analysis. North-Holland, Amsterdam, 1981.
  11. R. De Possel. Sur la dérivation abstraite des fonctions d’ensemble. J. Math Pure Appl. (1936), 391–409.
  12. F. Di Biase. Fatou Type Theorems. Maximal Functions and Approach Regions. Birkhäuser, Boston, 1998.
  13. F. Di Biase. True or False? A Case in the Study of Harmonic Functions. Topoi 28, 143–160 (2009). doi.org/10.1007/s11245-009-9059-2
  14. F. Di Biase and B. Fischer. Boundary behaviour of Hpsuperscript𝐻𝑝H^{p}italic_H start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT functions on convex domains of finite type in ℂnsuperscriptℂ𝑛{\mathbb{C}}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Pacific J.  Math. 183 (1998), 25–38.
  15. Foundations of Fatou Theory and a Tribute to the Work of E. M. Stein on Boundary Behavior of Holomorphic Functions. J. Geom. Anal. 31, 7184–7296 (2021).
  16. On the Differentiation of Integrals in Measure Spaces Along Filters. J. Geom. Anal. 33, 29 (2023). https://doi.org/10.1007/s12220-022-01050-7
  17. On the Sharpness of the Stolz Approach Ann Acad Sci Fenn Mat 31 (2006) 47–59
  18. S. Eilenberg and S. MacLane. General Theory of Natural Equivalences. Trans. Amer. Math. Soc. 58 (2), 231-294 (1945).
  19. P. Fatou. Series trigonometriques et series de Taylor. Acta Math. 30 (1906), 335–400.
  20. D.H. Fremlin. Measure Theory. Volume 1 ( Second Edition) Torres Fremlin, 2011.
  21. D.H. Fremlin. Measure Theory. Volume 3. Torres Fremlin, 2002.
  22. G. Grätzer. Universal Algebra. Van Nostrand, Princeton, 1968.
  23. Differential- und Integralrechnung unter besonderer Berücksichtigung neuerer Ergebnisse. Bd. III. Integralrechnung. 2te Aufl. Walter de Gruyter & Co., Berlin, 1955.
  24. A. Ionescu Tulcea and C. Ionescu Tulcea. On the lifting Property (I). J. Math. Anal. Appl. 3, 537-546 (1961).
  25. A. Ionescu Tulcea and C. Ionescu Tulcea. Topics in the Theory of Lifting. Springer, Berlin, 1969.
  26. A. Jamneshan, T. Tao Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration. arXiv:2010.00681v3
  27. P.T. Johnstone. Notes on Logic and Set Theories. Cambridge University Press, Cambridge, 1987.
  28. A. Korányi. Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc. 135 (1969), 507–516.
  29. D. Kölzow. Differentiation und Maßen Springer, Berlin, 1968.
  30. S. G. Krantz. Invariant metrics and the boundary behavior of holomorphic functions on domains in ℂnsuperscriptℂ𝑛{\mathbb{C}}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Geom. Anal. 1 (1991), 71–97.
  31. S. G. Krantz. Function Theory of Several Complex Variables American Mathematical Society, Providence, 2001.
  32. S. G. Krantz. The boundary behavior of holomorphic functions: global and local results. Asian J. Math. 11 (2007), 179–199.
  33. F. William Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the context of Functorial Semantics of Algebraic Theories. Ph.D. Thesis, Columbia University, 1963. Available at http://www.tac.mta.ca/tac/reprints/articles/5/tr5.pdf
  34. D. Lučić and E. Pasqualetto. The metric-valued Lebesgue differentiation theorem in measure spaces and its applications. Adv. Oper. Theory 8, 32 (2023).
  35. S. Mac Lane and G. Birkhoff. Algebra. Third Edition. AMS Chelsea Publishing, 1999.
  36. S. Mac Lane. Categories for the Working Mathematicians. Second Edition. Springer-Verlag, Berlin, 1978.
  37. D. Maharam. On a theorem of Von Neumann Proceedings of the American Mathematical Society Vol. 9, No. 6 (Dec., 1958), pp. 987-994.
  38. Yu. I. Manin. A Course in Mathematical Logic for Mathematicians. Second Edition. With collaboration by B. Zilber. Springer, New York, 2010.
  39. B. McLean. Algebras of multiplace functions for signatures containing antidomain. Algebra Universalis 78 (2017): 215-248.
  40. A. Nagel and E. M. Stein. On certain maximal functions and approach regions. Adv. Math.  54 (1984), 83–106.
  41. V. Poythress. Partial Morphisms on Partial Algebras. Algebra Universalis 3/2 (1973): 182-202.
  42. H. L. Royden. Real Analysis. Second Edition. The Macmillan Company, London, 1968.
  43. W. Rudin. Inner function images of radii. Math. Proc. Cambridge. Philos. Soc. 85 (1979), 357–360
  44. J.-P. Serre. Lie Algebras and Lie Groups. 1964 Lectures Given at Harvard University. W.A. Benjamin, New York, 1965.
  45. S. Shelah. Lifting problem of the measure algebra. Israel J. Math. 45, 90–96 (1983). doi.org/10.1007/BF02760673
  46. E. M. Stein. Singular Integrals and Differentiability Properties of Functions Princeton University Press, Princeton, 1970.
  47. E. M. Stein. Boundary Behavior of Holomorphic Functions of Several Complex Variables Princeton University Press, Princeton, 1972.
  48. E. M. Stein. and G. Weiss Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, 1971.
  49. Tao, T. Yoneda’s lemma as an identification of form and function: the case study of polynomials. What’s new. (terrytao.wordpress.com). terrytao.wordpress.com/2023/08/25/yonedas-lemma-as-an-identification-of-form-and-function-the-case-study-of-polynomials Accessed December 12, 2023.
  50. T. Traynor. An elementary proof of the lifting theorem. Pacific Journal of Mathematics Vol. 53 No. 1 (1974), 267-272.
  51. D. van Dalen. Logic and Structure. Second Edition. Springer, Berlin, 1983.
  52. J. Von Neumann. Algebraische Repräsentanten der Funktionen “bis auf eine Menge vom Maß Null” Journal für die reine und angewandte Mathematik 165 (1931): 109-115. http://eudml.org/doc/149773
  53. J. von Neumann and M. Stone. The determination of representative elements in the residual classes of a Boolean algebra. Fundamenta Mathematicae 25 (1935), 353-378.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: