Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonreciprocal PT-symmetric phase transition in a non-Hermitian chiral quantum optical system (2404.12860v2)

Published 19 Apr 2024 in quant-ph

Abstract: Phase transitions, non-Hermiticity and nonreciprocity play central roles in fundamental physics. However, the triple interplay of these three fields is of lack in the quantum domain. Here, we show nonreciprocal parity-time-symmetric phase transition in a non-Hermitian chiral quantum electrodynamical system, caused by the directional system dissipation. In remarkable contrast to previously reported nonreciprocal phase transitions, the nonreciprocal parity-time-symmetric phases appear even when the atom-resonator coupling is reciprocal. Nonreciprocal photon blockade is obtained in the nonreciprocal phase region. These results may deepen the fundamental insight of nonreciprocal and non-Hermitian quantum physics, and also open a new door for unconventional quantum manipulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. G. Chapline and M. Nauenberg, Phase transition from baryon to quark matter, Nature (London) 264, 235 (1976).
  2. T. W. B. Kibble, Some implications of a cosmological phase transition, Phys. Rep. 67, 183 (1980).
  3. Y. K. Wang and F. T. Hioe, Phase transition in the Dicke model of superradiance, Phys. Rev. A 7, 831 (1973).
  4. D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum critical behavior for a model magnet, Phys. Rev. Lett. 77, 940 (1996).
  5. S. Sachdev, Quantum criticality: Competing ground states in low dimensions, Science 288, 475 (2000).
  6. S. Sachdev, Quantum phase transitions, Phys. World 12, 33 (1999).
  7. M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66, 2069 (2003).
  8. J. Orenstein and A. J. Millis, Advances in the physics of high-temperature superconductivity, Science 288, 468 (2000).
  9. B. Wang, F. Nori, and Z.-L. Xiang, Quantum phase transitions in optomechanical systems, Phys. Rev. Lett. 132, 053601 (2024).
  10. C. M. Bender, Making sense of non-Hermitian hamiltonians, Rep. Prog. Phys. 70, 947 (2007).
  11. P. Cejnar, S. Heinze, and M. Macek, Coulomb analogy for non-Hermitian degeneracies near quantum phase transitions, Phys. Rev. Lett. 99, 100601 (2007).
  12. T. E. Lee, F. Reiter, and N. Moiseyev, Entanglement and spin squeezing in non-Hermitian phase transitions, Phys. Rev. Lett. 113, 250401 (2014).
  13. S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122, 237601 (2019).
  14. Z. Yu and S. Fan, Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics 3, 91 (2009).
  15. K. Xia, F. Nori, and M. Xiao, Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity, Phys. Rev. Lett. 121, 203602 (2018).
  16. R. Fleury, D. Sounas, and A. Alù, An invisible acoustic sensor based on parity-time symmetry, Nat. Commun. 6, 5905 (2015).
  17. H.-K. Lau and A. A. Clerk, Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing, Nat. Commun. 9, 4320 (2018).
  18. A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics, Nat. Commun. 11, 5382 (2020).
  19. W. Ding, X. Wang, and S. Chen, Fundamental sensitivity limits for non-Hermitian quantum sensors, Phys. Rev. Lett. 131, 160801 (2023).
  20. N. P. Kryuchkov, A. V. Ivlev, and S. O. Yurchenko, Dissipative phase transitions in systems with nonreciprocal effective interactions, Soft Matter 14, 9720 (2018).
  21. Z. Zhang, P. Delplace, and R. Fleury, Superior robustness of anomalous non-reciprocal topological edge states, Nature (London) 598, 293 (2021).
  22. E. I. R. Chiacchio, A. Nunnenkamp, and M. Brunelli, Nonreciprocal Dicke model, Phys. Rev. Lett. 131, 113602 (2023).
  23. H. Alston, L. Cocconi, and T. Bertrand, Irreversibility across a nonreciprocal 𝒫⁢𝒯𝒫𝒯\mathcal{P}\mathcal{T}caligraphic_P caligraphic_T-symmetry-breaking phase transition, Phys. Rev. Lett. 131, 258301 (2023).
  24. S. Verma and M. J. Park, Topological phase transitions of generalized Brillouin zone, Commun. Phys. 7, 21 (2024).
  25. A. Wang, Z. Meng, and C. Q. Chen, Non-Hermitian topology in static mechanical metamaterials, Sci. Adv. 9, eadf7299 (2023).
  26. T. V. Mechelen and Z. Jacob, Universal spin-momentum locking of evanescent waves, Optica 3, 118 (2016).
  27. D. A. Steck, Quantum and Atom Optics (2007).
  28. J.-S. Tang, L. Tang, and K. Xia, Three methods for the single-photon transport in a chiral cavity quantum electrodynamics system, Chin. Opt. Lett. 20, 062701 (2022c).
  29. K. Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin Hall effect of light, Science 348, 1448 (2015).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: