Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Universality of giant diffusion in tilted periodic potentials (2404.12761v2)

Published 19 Apr 2024 in cond-mat.stat-mech

Abstract: Giant diffusion, where the diffusion coefficient of a Brownian particle in a periodic potential with an external force is significantly enhanced by the external force, is a non-trivial non-equilibrium phenomenon. We propose a simple stochastic model of giant diffusion, which is based on a biased continuous-time random walk (CTRW) with flight time. By introducing a flight time representing traversal dynamics, we derive the diffusion coefficient using renewal theory and demonstrate its universal peak behavior under various periodic potentials, especially in low-temperature regimes. Giant diffusion is universally observed in the sense that there is a peak of the diffusion coefficient for any tilted periodic potentials and the degree of the diffusivity is greatly enhanced especially for low-temperature regimes. The biased CTRW models with flight times are applied to diffusion under three tilted periodic potentials. Furthermore, the temperature dependence of the maximum diffusion coefficient and the external force that attains the maximum are presented for diffusion under a tilted sawtooth potential.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.