Papers
Topics
Authors
Recent
2000 character limit reached

Hypotheses regarding Baxter's $T-Q$ relation for the periodic XYZ chain (2404.12615v1)

Published 19 Apr 2024 in math-ph and math.MP

Abstract: Baxter's $T-Q$ relation for the periodic spin-$\frac12$ XYZ chain is studied. We extensively perform numerical calculations for the $T-Q$ relation and the Bethe ansatz equations. Numerical based hypotheses are then proposed to answer some open questions regarding Baxter's $T-Q$ relation and the XYZ chain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
  2. L. Šamaj and Z. Bajnok, Introduction to the statistical physics of integrable many-body systems (Cambridge University Press, 2013).
  3. R. Baxter, Ann. Phys. 76, 25 (1973a).
  4. R. Baxter, Ann. Phys. 76, 1 (1973b).
  5. R. Baxter, Ann. Phys. 76, 48 (1973c).
  6. L. A. Takhtadzhan and L. D. Faddeev, Rush. Math. Surveys 34, 11 (1979).
  7. T. Deguchi, J. Phys. A: Math. Gen. 35, 879 (2002).
  8. A. Klümper and J. Zittartz, Z. Phys. B 71, 495 (1988).
  9. A. Klümper and J. Zittartz, Z. Phys. B 75, 371 (1989).
  10. K. Fabricius, J. Phys. A: Math. Theor. 40, 4075 (2007).
  11. K. Fabricius and B. M. McCoy, J. Stat. Phys. 134, 643–668 (2009).
  12. R. J. Baxter, J. Stat. Phys. 108, 1 (2002).
  13. W.-L. Yang and Y.-Z. Zhang, Nucl. Phys. B 744, 312 (2006).
  14. X. Zhang, A. Klümper, and V. Popkov, Phys. Rev. B 109, 115411 (2024).
  15. L. A. Takhtajan, Physica D: Nonlinear Phenomena 3, 231 (1981).
  16. N. Slavnov, A. Zabrodin, and A. Zotov, JHEP 2020 (6), 123.
  17. M. Takahashi and M. Suzuki, Prog. Theor. Phys. 48, 2187 (1972).
  18. M. Takahashi, Thermodynamics of one-dimensional solvable models (Cambridge university press Cambridge, 1999).
  19. X. Zhang, A. Klümper, and V. Popkov, Phys. Rev. B 106, 075406 (2022).
  20. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, 1950).
  21. G. Kulkarni and N. A. Slavnov, arXiv:2303.02439  (2023).
  22. R. I. Nepomechie and C. Wang, J. Phys. A: Math. Theor. 46, 325002 (2013).
  23. W. Hao, R. I. Nepomechie, and A. J. Sommese, Phys. Rev. E 88, 052113 (2013).
  24. V. Popkov, X. Zhang, and A. Klümper, Phys. Rev. B 104, L081410 (2021).
  25. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, 1997).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.