Papers
Topics
Authors
Recent
2000 character limit reached

Study of bottom quark dynamics via non-prompt $D^0$ and $J/ψ$ in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV

Published 19 Apr 2024 in hep-ph, nucl-ex, and nucl-th | (2404.12601v1)

Abstract: We study bottom quark energy loss via the nuclear modification factor ($R_\mathrm{AA}$) and elliptic flow ($v_2$) of non-prompt $D0$ and $J/\psi$ in relativistic heavy-ion collisions at the LHC. The space-time profile of quark-gluon plasma is obtained from the CLVisc hydrodynamics simulation, the dynamical evolution of heavy quarks inside the color deconfined QCD medium is simulated using a linear Boltzmann transport model that combines Yukawa and string potentials of heavy-quark-medium interactions, the hadronization of heavy quarks is performed using a hybrid coalescence-fragmentation model, and the decay of $B$ mesons is simulated via PYTHIA. Using this numerical framework, we calculate the transverse momentum ($p_\mathrm{T}$) dependent $R_\mathrm{AA}$ and $v_2$ of direct $D$ mesons, $B$ mesons, and non-prompt $D0$ and $J/\psi$ from $B$ meson decay in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV. We find the mass hierarchy of the nuclear modification of prompt $D$ and $B$ mesons depends on their $p_\mathrm{T}$. Both $R_\mathrm{AA}$ and $v_2$ of heavy flavor particles show strong $p_\mathrm{T}$ and centrality dependences due to the interplay between parton energy loss, medium geometry and flow, and hadronization of heavy quarks. Non-prompt $D0$ and $J/\psi$ share similar patterns of $R_\mathrm{AA}$ and $v_2$ to $B$ mesons except for a $p_\mathrm{T}$ shift during the decay processes. Therefore, future more precise measurements on non-prompt $D0$ and $J/\psi$ can help further pin down the bottom quark dynamics inside the quark-gluon plasma.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (106)
  1. M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005), arXiv:nucl-th/0405013.
  2. Ann. Rev. Nucl. Part. Sci. 62, 361 (2012), arXiv:1202.3233.
  3. P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2019), arXiv:1712.05815.
  4. Nucl. Phys. A 595, 346 (1995), arXiv:nucl-th/9504018.
  5. U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826.
  6. Int. J. Mod. Phys. A 28, 1340011 (2013), arXiv:1301.5893.
  7. P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013), arXiv:1311.1849.
  8. X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).
  9. (2003), arXiv:nucl-th/0302077.
  10. A. Majumder and M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011), arXiv:1002.2206.
  11. Int. J. Mod. Phys. E24, 1530014 (2015), arXiv:1511.00790.
  12. J.-P. Blaizot and Y. Mehtar-Tani, Int. J. Mod. Phys. E 24, 1530012 (2015), arXiv:1503.05958.
  13. S. Cao and X.-N. Wang, Rept. Prog. Phys. 84, 024301 (2021), arXiv:2002.04028.
  14. S. Cao and G.-Y. Qin, Ann. Rev. Nucl. Part. Sci. 73, 205 (2023), arXiv:2211.16821.
  15. Ann. Rev. Nucl. Part. Sci. 69, 417 (2019), arXiv:1903.07709.
  16. A. Andronic et al., Eur. Phys. J. C76, 107 (2016), arXiv:1506.03981.
  17. Prog. Part. Nucl. Phys. 130, 104020 (2023), arXiv:2204.09299.
  18. Phys. Rev. C88, 044907 (2013), arXiv:1308.0617.
  19. Phys. Rev. C 94, 014909 (2016), arXiv:1605.06447.
  20. Phys. Lett. B 805, 135424 (2020), arXiv:1906.00413.
  21. F.-L. Liu et al., (2021), arXiv:2107.11713.
  22. STAR, L. Adamczyk et al., Phys. Rev. Lett. 113, 142301 (2014), arXiv:1404.6185, [Erratum: Phys.Rev.Lett. 121, 229901 (2018)].
  23. CMS, A. M. Sirunyan et al., Phys. Lett. B 782, 474 (2018), arXiv:1708.04962.
  24. STAR, J. Adam et al., Phys. Rev. C 99, 034908 (2019), arXiv:1812.10224.
  25. J. Phys. G 32, S359 (2006).
  26. G.-Y. Qin and A. Majumder, Phys. Rev. Lett. 105, 262301 (2010), arXiv:0910.3016.
  27. Phys. Rev. C84, 024908 (2011), arXiv:1104.2295.
  28. Phys. Rev. C86, 034905 (2012), arXiv:1111.0647.
  29. W. Alberico et al., Eur. Phys. J. C71, 1666 (2011), arXiv:1101.6008.
  30. Phys. Rev. D88, 014018 (2013), arXiv:1302.5250.
  31. Phys. Rev. C90, 024907 (2014), arXiv:1305.3823.
  32. M. Djordjevic and M. Djordjevic, Phys. Lett. B 734, 286 (2014), arXiv:1307.4098.
  33. Phys. Rev. C92, 024907 (2015), arXiv:1505.01413.
  34. Phys. Lett. B 747, 260 (2015), arXiv:1502.03757.
  35. Phys. Rev. C 93, 034906 (2016), arXiv:1512.00891.
  36. JHEP 03, 146 (2017), arXiv:1610.02043.
  37. C. A. G. Prado et al., Phys. Rev. C96, 064903 (2017), arXiv:1611.02965.
  38. Phys. Rev. C 97, 014907 (2018), arXiv:1710.00807.
  39. S. Y. F. Liu and R. Rapp, Phys. Rev. C97, 034918 (2018), arXiv:1711.03282.
  40. A. Beraudo et al., Nucl. Phys. A979, 21 (2018), arXiv:1803.03824.
  41. S. Cao et al., Phys. Rev. C99, 054907 (2019), arXiv:1809.07894.
  42. Phys. Rev. C98, 014909 (2018), arXiv:1803.01508.
  43. Phys. Rev. C 98, 064901 (2018), arXiv:1806.08848.
  44. Phys. Rev. C 99, 054909 (2019), arXiv:1901.04600.
  45. (2019), arXiv:1906.10768.
  46. Chin. Phys. C 44, 114101 (2020), arXiv:2005.03330.
  47. Phys. Lett. B 834, 137448 (2022), arXiv:2111.08490.
  48. M. Yang et al., Phys. Rev. C 107, 054917 (2023), arXiv:2302.06179.
  49. (2023), arXiv:2304.08787.
  50. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
  51. STAR, K. H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001), arXiv:nucl-ex/0009011.
  52. STAR, C. Adler et al., Phys. Rev. Lett. 87, 182301 (2001), arXiv:nucl-ex/0107003.
  53. ALICE, K. Aamodt et al., Phys. Rev. Lett. 105, 252302 (2010), arXiv:1011.3914.
  54. ALICE, K. Aamodt et al., Phys. Rev. Lett. 107, 032301 (2011), arXiv:1105.3865.
  55. B. Alver and G. Roland, Phys. Rev. C81, 054905 (2010), arXiv:1003.0194.
  56. Phys. Rev. C82, 064903 (2010), arXiv:1009.1847.
  57. G. D. Moore and D. Teaney, Phys. Rev. C71, 064904 (2005), hep-ph/0412346.
  58. Phys. Rev. C 86, 014903 (2012), arXiv:1106.6006.
  59. Phys. Lett. B 838, 137733 (2023), arXiv:2112.15062.
  60. Eur. Phys. J. C78, 348 (2018), arXiv:1712.00730.
  61. M. He and R. Rapp, Phys. Rev. Lett. 124, 042301 (2020), arXiv:1905.09216.
  62. Phys. Rev. C 101, 024909 (2020), arXiv:1905.09774.
  63. S. Cao et al., Phys. Lett. B 807, 135561 (2020), arXiv:1911.00456.
  64. J. Zhao et al., (2023), arXiv:2311.10621.
  65. STAR, L. Adamczyk et al., Phys. Rev. Lett. 118, 212301 (2017), arXiv:1701.06060.
  66. CMS, A. M. Sirunyan et al., Phys. Rev. Lett. 120, 202301 (2018), arXiv:1708.03497.
  67. ALICE, S. Acharya et al., Phys. Rev. Lett. 120, 102301 (2018), arXiv:1707.01005.
  68. ALICE, S. Acharya et al., Phys. Lett. B 813, 136054 (2021), arXiv:2005.11131.
  69. Phys. Rev. Lett. 121, 052004 (2018), arXiv:1712.07024.
  70. Phys. Lett. B 519, 199 (2001), arXiv:hep-ph/0106202.
  71. Phys. Rev. D 69, 114003 (2004), arXiv:hep-ph/0312106.
  72. Phys. Rev. Lett. 93, 072301 (2004), arXiv:nucl-th/0309040.
  73. M. Djordjevic and M. Gyulassy, Nucl. Phys. A733, 265 (2004), arXiv:nucl-th/0310076.
  74. Phys. Rev. C100, 034907 (2019), arXiv:1812.11048.
  75. CMS, A. M. Sirunyan et al., Phys. Rev. Lett. 123, 022001 (2019), arXiv:1810.11102.
  76. ALICE, S. Acharya et al., JHEP 12, 126 (2022), arXiv:2202.00815.
  77. ALICE, S. Acharya et al., Eur. Phys. J. C 83, 1123 (2023), arXiv:2307.14084.
  78. ATLAS, M. Aaboud et al., Eur. Phys. J. C 78, 784 (2018), arXiv:1807.05198.
  79. ATLAS, M. Aaboud et al., Eur. Phys. J. C 78, 762 (2018), arXiv:1805.04077.
  80. ATLAS, G. Aad et al., Phys. Lett. B 807, 135595 (2020), arXiv:2003.03565.
  81. ATLAS, G. Aad et al., Phys. Lett. B 829, 137077 (2022), arXiv:2109.00411.
  82. ALICE, S. Acharya et al., Phys. Lett. B 804, 135377 (2020), arXiv:1910.09110.
  83. CMS, A. Tumasyan et al., JHEP 10, 115 (2023), arXiv:2305.16928.
  84. ALICE, S. Acharya et al., JHEP 02, 066 (2024), arXiv:2308.16125.
  85. Phys. Rev. C91, 054908 (2015), arXiv:1503.03313.
  86. Phys. Lett. B777, 255 (2018), arXiv:1703.00822.
  87. B. Combridge, Nucl. Phys. B151, 429 (1979).
  88. B. Svetitsky, Phys. Rev. D37, 2484 (1988).
  89. Phys. Rev. C57, 889 (1998), arXiv:nucl-th/9706001.
  90. S. Y. F. Liu and R. Rapp, Eur. Phys. J. A 56, 44 (2020), arXiv:1612.09138.
  91. Phys. Rev. Lett. 85, 3591 (2000), arXiv:hep-ph/0005044.
  92. A. Majumder, Phys. Rev. D85, 014023 (2012), arXiv:0912.2987.
  93. Phys. Rev. C86, 024911 (2012), arXiv:1205.5019.
  94. Phys. Rev. C 97, 064918 (2018), arXiv:1802.04449.
  95. Phys. Rev. C 98, 024913 (2018), arXiv:1805.03762.
  96. Phys. Rev. C 105, 034909 (2022), arXiv:2107.04949.
  97. JHEP 03, 006 (2001), arXiv:hep-ph/0102134.
  98. M. Cacciari et al., JHEP 10, 137 (2012), arXiv:1205.6344.
  99. Eur. Phys. J. C75, 610 (2015), arXiv:1507.06197.
  100. S. Dulat et al., Phys. Rev. D93, 033006 (2016), arXiv:1506.07443.
  101. Eur. Phys. J. C77, 163 (2017), arXiv:1612.05741.
  102. JHEP 0605, 026 (2006), arXiv:hep-ph/0603175.
  103. ALICE, S. Acharya et al., JHEP 01, 174 (2022), arXiv:2110.09420.
  104. CMS, A. M. Sirunyan et al., Phys. Lett. B 816, 136253 (2021), arXiv:2009.12628.
  105. CMS, A. Tumasyan et al., Phys. Lett. B 850, 138389 (2024), arXiv:2212.01636.
  106. (2023), arXiv:2307.14808.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.