Papers
Topics
Authors
Recent
2000 character limit reached

Plane-wave compounding with adaptive joint coherence factor weighting (2404.12533v2)

Published 18 Apr 2024 in eess.IV

Abstract: Coherent Plane Wave Compounding (CPWC) is widely used for ultrasound imaging. This technique involves sending plane waves into a sample at different transmit angles and recording the resultant backscattered echo at different receive positions. The time-delayed signals from the different combinations of transmit angles and receive positions are then coherently summed to produce a beamformed image. Various techniques have been developed to characterize the quality of CPWC beamforming based on the measured coherence across the transmit or receive apertures. Here, we propose a more fine-grained approach where the signals from every transmit/receive combination are separately evaluated using a quality metric based on their joint spatio-angular coherence. The signals are then individually weighted according to their measured Joint Coherence Factor (JCF) prior to being coherently summed. To facilitate the comparison of JCF beamforming compared to alternative techniques, we further propose a method of image display standardization based on contrast matching. We show results from tissue-mimicking phantoms and human soft-tissue imaging. Fine-grained JCF weighting is found to improve CPWC image quality compared to alternative approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 3, pp. 489–506, Mar. 2009.
  2. J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Mézière, M. Fink, and M. Tanter, “Ultrafast compound doppler imaging: providing full blood flow characterization,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 1, pp. 134–147, Jan. 2011, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  3. J. LONG, G. TRAHEY, and N. BOTTENUS, “SPATIAL COHERENCE IN MEDICAL ULTRASOUND: A REVIEW,” Ultrasound in medicine & biology, vol. 48, no. 6, pp. 975–996, Jun. 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067166/
  4. R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo measurements,” The Journal of the Acoustical Society of America, vol. 90, no. 5, pp. 2718–2727, Nov. 1991, publisher: Acoustical Society of America. [Online]. Available: http://asa.scitation.org/doi/10.1121/1.401867
  5. ——, “Adaptive focusing in scattering media through sound‐speed inhomogeneities: The van Cittert Zernike approach and focusing criterion,” The Journal of the Acoustical Society of America, vol. 96, no. 6, pp. 3721–3732, Dec. 1994, publisher: Acoustical Society of America. [Online]. Available: http://asa.scitation.org/doi/10.1121/1.410562
  6. P.-C. Li and M.-L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 2, pp. 128–141, Feb. 2003, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  7. J. Camacho, M. Parrilla, and C. Fritsch, “Phase Coherence Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 5, pp. 958–974, May 2009, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  8. K. Hollman, K. Rigby, and M. O’Donnell, “Coherence factor of speckle from a multi-row probe,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), vol. 2, Oct. 1999, pp. 1257–1260 vol.2, iSSN: 1051-0117.
  9. M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: imaging characteristics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 7, pp. 1377–1388, Jul. 2011, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  10. M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-Lag Spatial Coherence Imaging of Cardiac Ultrasound Data: Initial Clinical Results,” Ultrasound in Medicine & Biology, vol. 39, no. 10, pp. 1861–1874, Oct. 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0301562913006649
  11. G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The Delay Multiply and Sum Beamforming Algorithm in Ultrasound B-Mode Medical Imaging,” IEEE Transactions on Medical Imaging, vol. 34, no. 4, pp. 940–949, Apr. 2015, conference Name: IEEE Transactions on Medical Imaging.
  12. Y. L. Li and J. J. Dahl, “Angular coherence in ultrasound imaging: Theory and applications,” The Journal of the Acoustical Society of America, vol. 141, no. 3, pp. 1582–1594, Mar. 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390598/
  13. C. Yang, J. Xu, Y. Xu, Y. Cui, and Y. Jiao, “Coherent Plane-Wave Compounding Based on United Coherence Factor,” IEEE Access, vol. 8, pp. 112 751–112 761, 2020, conference Name: IEEE Access.
  14. J.-f. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 9, pp. 1868–1879, Sep. 2009, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  15. O. M. H. Rindal and A. Austeng, “Double Adaptive Plane-wave Imaging,” in 2016 IEEE International Ultrasonics Symposium (IUS), Sep. 2016, pp. 1–4, iSSN: 1948-5727. [Online]. Available: https://ieeexplore.ieee.org/document/7728906
  16. J. Zhao, Y. Wang, X. Zeng, J. Yu, B. Y. S. Yiu, and A. C. H. Yu, “Plane wave compounding based on a joint transmitting-receiving adaptive beamformer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 8, pp. 1440–1452, Aug. 2015, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. [Online]. Available: https://ieeexplore.ieee.org/document/7185011
  17. N. Q. Nguyen and R. W. Prager, “A Spatial Coherence Approach to Minimum Variance Beamforming for Plane-Wave Compounding,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 4, pp. 522–534, Apr. 2018, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8259306
  18. S. W. Smith, H. Lopez, and W. J. Bodine, “Frequency independent ultrasound contrast-detail analysis,” Ultrasound in Medicine & Biology, vol. 11, no. 3, pp. 467–477, May 1985. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0301562985901589
  19. M. S. Patterson and F. S. Foster, “The Improvement and Quantitative Assessment of B-Mode Images Produced by an Annular Array/Cone Hybrid,” Ultrasonic Imaging, vol. 5, no. 3, pp. 195–213, Jul. 1983, publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/016173468300500301
  20. S. M. Hverven, O. M. H. Rindal, A. J. Hunter, and A. Austeng, “Point scatterer enhancement in ultrasound by wavelet coefficient shrinkage,” in 2017 IEEE International Ultrasonics Symposium (IUS), Sep. 2017, pp. 1–4, iSSN: 1948-5727. [Online]. Available: https://ieeexplore.ieee.org/document/8092971
  21. O. M. H. Rindal, A. Austeng, A. Fatemi, and A. Rodriguez-Molares, “The Effect of Dynamic Range Alterations in the Estimation of Contrast,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 7, pp. 1198–1208, Jul. 2019, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  22. A. Rodriguez-Molares, O. M. H. Rindal, J. D’hooge, S.-E. Måsøy, A. Austeng, M. A. Lediju Bell, and H. Torp, “The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 4, pp. 745–759, Apr. 2020, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  23. O. M. H. Rindal, T. G. Bjåstad, T. Espeland, E. A. R. Berg, and S.-E. Måsøy, “A Very Large Cardiac Channel Data Database (VLCD) Used to Evaluate Global Image Coherence (GIC) as an In Vivo Image Quality Metric,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 70, no. 10, pp. 1295–1307, Oct. 2023, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  24. G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.
  25. D. Garcia, “Make the most of MUST, an open-source Matlab UltraSound Toolbox,” in 2021 IEEE International Ultrasonics Symposium (IUS), Sep. 2021, pp. 1–4, iSSN: 1948-5727.
  26. V. Perrot, M. Polichetti, F. Varray, and D. Garcia, “So you think you can DAS? A viewpoint on delay-and-sum beamforming,” Ultrasonics, vol. 111, p. 106309, Mar. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0041624X20302444
  27. A. Rodriguez-Molares, O. M. H. Rindal, O. Bernard, A. Nair, M. A. Lediju Bell, H. Liebgott, A. Austeng, and L. Lovstakken, “The UltraSound ToolBox,” in 2017 IEEE International Ultrasonics Symposium (IUS), Sep. 2017, pp. 1–4, iSSN: 1948-5727.
  28. H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. Jensen, and O. Bernard, “Plane-Wave Imaging Challenge in Medical Ultrasound,” in 2016 IEEE International Ultrasonics Symposium (IUS), Sep. 2016, pp. 1–4, iSSN: 1948-5727.
  29. J. Albayda and N. van Alfen, “Diagnostic Value of Muscle Ultrasound for Myopathies and Myositis,” Current Rheumatology Reports, vol. 22, no. 11, p. 82, Sep. 2020. [Online]. Available: https://doi.org/10.1007/s11926-020-00947-y
  30. C. Yang, Y. Jiao, T. Jiang, Y. Xu, and Y. Cui, “A United Sign Coherence Factor Beamformer for Coherent Plane-Wave Compounding with Improved Contrast,” Applied Sciences, vol. 10, no. 7, p. 2250, Jan. 2020, number: 7 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2076-3417/10/7/2250
  31. B. M. Asl and A. Mahloojifar, “Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 11, pp. 2381–2390, Nov. 2010, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.
  32. Z. Lan, L. Jin, S. Feng, C. Zheng, Z. Han, and H. Peng, “Joint Generalized Coherence Factor and Minimum Variance Beamformer for Synthetic Aperture Ultrasound Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 4, pp. 1167–1183, Apr. 2021, conference Name: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.