Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

False vacuum decay and nucleation dynamics in neutral atom systems (2404.12360v2)

Published 18 Apr 2024 in quant-ph, cond-mat.quant-gas, cond-mat.stat-mech, hep-th, and physics.atom-ph

Abstract: Metastable states of quantum many-body systems with confinement offer a means to simulate false vacuum phenomenology, including non-equilibrium dynamical processes like decay by nucleation, in truncated limits. Recent work has examined the decay process in 1D ferromagnetic Ising spins and superfluids. In this paper, we study nucleation dynamics in 1D antiferromagnetic neutral atom chains with Rydberg interactions, using both numerical simulations and analytic modeling. We apply a staggered local detuning field to generate the metastable and ground states. Our efforts focus on two dynamical regimes: decay and annealing. In the first, we corroborate the phenomenological decay rate scaling and determine the associated parameter range for the decay process; in the second, we uncover and elucidate a procedure to anneal the metastable state from the initial to the final system, with intermediate nucleation events. We further propose experimental protocols to prepare the required states and perform quenches on near-term neutral atom quantum simulators, examining the experimental feasibility of our proposed setup and parameter regime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. S. Coleman, Phys. Rev. D 15, 2929 (1977a).
  2. S. Coleman, Phys. Rev. D 16, 1248 (1977b).
  3. I. Y. Kobzarev, L. B. Okun, and M. B. Voloshin, Yad. Fiz. 20, 1229 (1974).
  4. M. Stone, Phys. Rev. D 14, 3568 (1976).
  5. M. Stone, Physics Letters B 67, 186 (1977).
  6. C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
  7. M. B. Voloshin, Yad. Fiz. 42, 1017 (1985).
  8. J. Langer, Annals of Physics 41, 108 (1967).
  9. I. M. Lifshitz and Y. Kagan, Soviet Physics JETP 35, 206 (1972).
  10. S. B. Rutkevich, Phys. Rev. B 60, 14525 (1999).
  11. S. Z. D. Cheng and A. Keller, Annual Review of Materials Research 28, 533 (1998).
  12. A. Keller and S. Z. Cheng, Polymer 39, 4461 (1998).
  13. D. Thirumalai and G. Reddy, Nature Chemistry 3, 910 (2011).
  14. D. K. Ghosh and A. Ranjan, Protein Science 29, 1559 (2020).
  15. D. Szász-Schagrin and G. Takács, Phys. Rev. D 106, 025008 (2022).
  16. M. Lencsés, G. Mussardo, and G. Takács, Phys. Rev. D 106, 105003 (2022).
  17. S. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980).
  18. A. H. Guth and E. J. Weinberg, Nuclear Physics B 212, 321 (1983).
  19. A. Linde, Physics Letters B 100, 37 (1981).
  20. A. Linde, Nuclear Physics B 216, 421 (1983).
  21. A. H. Guth and E. J. Weinberg, Phys. Rev. D 23, 876 (1981).
  22. M. S. Turner and F. Wilczek, Nature 298, 633 (1982).
  23. S. W. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev. D 26, 2681 (1982).
  24. A. Mazumdar and G. White, Reports on Progress in Physics 82, 076901 (2019).
  25. T. Markkanen, A. Rajantie, and S. Stopyra, Frontiers in Astronomy and Space Sciences 5, 10.3389/fspas.2018.00040 (2018).
  26. T. P. Billam, K. Brown, and I. G. Moss, Phys. Rev. A 102, 043324 (2020).
  27. A. Sinha, T. Chanda, and J. Dziarmaga, Phys. Rev. B 103, L220302 (2021).
  28. S. Abel and M. Spannowsky, PRX Quantum 2, 010349 (2021).
  29. A. Browaeys and T. Lahaye, Nature Physics 16, 132 (2020).
  30. R. Verresen, M. D. Lukin, and A. Vishwanath, Phys. Rev. X 11, 031005 (2021).
  31. S. Ohler, M. Kiefer-Emmanouilidis, and M. Fleischhauer, Phys. Rev. Res. 5, 013157 (2023).
  32. F. M. Surace and A. Lerose, New Journal of Physics 23, 062001 (2021).
  33. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
  34. K. Lee and E. J. Weinberg, Nuclear Physics B 267, 181 (1986).
  35. A. R. Brown, Phys. Rev. D 97, 105002 (2018).
  36. G. Münster and S. Rotsch, The European Physical Journal C - Particles and Fields 12, 161 (2000).
  37. G. V. Dunne and H. Min, Phys. Rev. D 72, 125004 (2005).
  38. M. Voloshin, Physics Letters B 599, 129 (2004).
  39. A. J. Daley, Nature Reviews Physics 5, 702 (2023).
  40. Perlmutter. (2023).
  41. Bloqade.jl: Package for the quantum computation and quantum simulation based on the neutral-atom architecture. (2023).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 5 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube