False vacuum decay and nucleation dynamics in neutral atom systems (2404.12360v2)
Abstract: Metastable states of quantum many-body systems with confinement offer a means to simulate false vacuum phenomenology, including non-equilibrium dynamical processes like decay by nucleation, in truncated limits. Recent work has examined the decay process in 1D ferromagnetic Ising spins and superfluids. In this paper, we study nucleation dynamics in 1D antiferromagnetic neutral atom chains with Rydberg interactions, using both numerical simulations and analytic modeling. We apply a staggered local detuning field to generate the metastable and ground states. Our efforts focus on two dynamical regimes: decay and annealing. In the first, we corroborate the phenomenological decay rate scaling and determine the associated parameter range for the decay process; in the second, we uncover and elucidate a procedure to anneal the metastable state from the initial to the final system, with intermediate nucleation events. We further propose experimental protocols to prepare the required states and perform quenches on near-term neutral atom quantum simulators, examining the experimental feasibility of our proposed setup and parameter regime.
- S. Coleman, Phys. Rev. D 15, 2929 (1977a).
- S. Coleman, Phys. Rev. D 16, 1248 (1977b).
- I. Y. Kobzarev, L. B. Okun, and M. B. Voloshin, Yad. Fiz. 20, 1229 (1974).
- M. Stone, Phys. Rev. D 14, 3568 (1976).
- M. Stone, Physics Letters B 67, 186 (1977).
- C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
- M. B. Voloshin, Yad. Fiz. 42, 1017 (1985).
- J. Langer, Annals of Physics 41, 108 (1967).
- I. M. Lifshitz and Y. Kagan, Soviet Physics JETP 35, 206 (1972).
- S. B. Rutkevich, Phys. Rev. B 60, 14525 (1999).
- S. Z. D. Cheng and A. Keller, Annual Review of Materials Research 28, 533 (1998).
- A. Keller and S. Z. Cheng, Polymer 39, 4461 (1998).
- D. Thirumalai and G. Reddy, Nature Chemistry 3, 910 (2011).
- D. K. Ghosh and A. Ranjan, Protein Science 29, 1559 (2020).
- D. Szász-Schagrin and G. Takács, Phys. Rev. D 106, 025008 (2022).
- M. Lencsés, G. Mussardo, and G. Takács, Phys. Rev. D 106, 105003 (2022).
- S. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980).
- A. H. Guth and E. J. Weinberg, Nuclear Physics B 212, 321 (1983).
- A. Linde, Physics Letters B 100, 37 (1981).
- A. Linde, Nuclear Physics B 216, 421 (1983).
- A. H. Guth and E. J. Weinberg, Phys. Rev. D 23, 876 (1981).
- M. S. Turner and F. Wilczek, Nature 298, 633 (1982).
- S. W. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev. D 26, 2681 (1982).
- A. Mazumdar and G. White, Reports on Progress in Physics 82, 076901 (2019).
- T. Markkanen, A. Rajantie, and S. Stopyra, Frontiers in Astronomy and Space Sciences 5, 10.3389/fspas.2018.00040 (2018).
- T. P. Billam, K. Brown, and I. G. Moss, Phys. Rev. A 102, 043324 (2020).
- A. Sinha, T. Chanda, and J. Dziarmaga, Phys. Rev. B 103, L220302 (2021).
- S. Abel and M. Spannowsky, PRX Quantum 2, 010349 (2021).
- A. Browaeys and T. Lahaye, Nature Physics 16, 132 (2020).
- R. Verresen, M. D. Lukin, and A. Vishwanath, Phys. Rev. X 11, 031005 (2021).
- S. Ohler, M. Kiefer-Emmanouilidis, and M. Fleischhauer, Phys. Rev. Res. 5, 013157 (2023).
- F. M. Surace and A. Lerose, New Journal of Physics 23, 062001 (2021).
- M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
- K. Lee and E. J. Weinberg, Nuclear Physics B 267, 181 (1986).
- A. R. Brown, Phys. Rev. D 97, 105002 (2018).
- G. Münster and S. Rotsch, The European Physical Journal C - Particles and Fields 12, 161 (2000).
- G. V. Dunne and H. Min, Phys. Rev. D 72, 125004 (2005).
- M. Voloshin, Physics Letters B 599, 129 (2004).
- A. J. Daley, Nature Reviews Physics 5, 702 (2023).
- Perlmutter. (2023).
- Bloqade.jl: Package for the quantum computation and quantum simulation based on the neutral-atom architecture. (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.