Papers
Topics
Authors
Recent
2000 character limit reached

Cosmic inflation prevents singularity formation in collapse into a Hayward black hole (2404.12243v3)

Published 18 Apr 2024 in gr-qc and hep-th

Abstract: We construct a (quantum mechanically) modified model for the Oppenheimer-Snyder collapse scenario where the exterior of the collapsing dust ball is a Hayward black hole spacetime and the interior is a dust Friedmann-Robertson-Walker cosmology. This interior cosmology is entirely determined by the junction conditions with the exterior black hole. It turns out to be non-singular, displaying a power-law contraction which precedes a de Sitter phase or, reversely, a power-law expansion followed by a de Sitter era. We demonstrate that cosmic inflation in the collapse setting is a mechanism that decelerates collapsing matter, thereby preventing singularity formation. We also analyse the global causal structure and the viability of the model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. Abhay Ashtekar and Martin Bojowald, ‘Black hole evaporation: A Paradigm,’ Class. Quant. Grav. 22, 3349–3362 (2005), arXiv:gr-qc/0504029 .
  2. Eric Poisson and W. Israel, ‘Structure of the Black Hole Nucleus,’ Class. Quant. Grav. 5, L201–L205 (1988).
  3. I. Dymnikova, ‘Vacuum nonsingular black hole,’ Gen. Rel. Grav. 24, 235–242 (1992).
  4. Sean A. Hayward, ‘Formation and evaporation of regular black holes,’ Phys. Rev. Lett. 96, 031103 (2006), arXiv:gr-qc/0506126 .
  5. Valeri P. Frolov, ‘Notes on nonsingular models of black holes,’ Phys. Rev. D 94, 104056 (2016), arXiv:1609.01758 [gr-qc] .
  6. M. Bobula, ‘Radiation in quantum gravitational collapse,’ https://indico.cern.ch/event/1100970/, LOOPS’22 (18-22 July 2022), ENS de Lyon.
  7. MichaƂ Bobula and Tomasz PawƂowski, ‘Rainbow Oppenheimer-Snyder collapse and the entanglement entropy production,’ Phys. Rev. D 108, 026016 (2023), arXiv:2303.12708 [gr-qc] .
  8. Luca Cafaro and Jerzy Lewandowski, ‘Status of Birkhoff’s theorem in polymerized semiclassical regime of Loop Quantum Gravity,’   (2024), arXiv:2403.01910 [gr-qc] .
  9. Eric Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, 2009).
  10. MichaƂ Bobula and Tomasz PawƂowski, ‘to appear,’   (2024).
  11. Alexei A. Starobinsky, ‘A New Type of Isotropic Cosmological Models Without Singularity,’ Phys. Lett. B 91, 99–102 (1980).
  12. Eric Poisson and W. Israel, ‘Inner-horizon instability and mass inflation in black holes,’ Phys. Rev. Lett. 63, 1663–1666 (1989).
  13. J. C. Schindler and A. Aguirre, ‘Algorithms for the explicit computation of Penrose diagrams,’ Class. Quant. Grav. 35, 105019 (2018), arXiv:1802.02263 [gr-qc] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.