Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Rationally independent free fermions with local hopping (2404.12100v2)

Published 18 Apr 2024 in quant-ph, cond-mat.quant-gas, and cond-mat.stat-mech

Abstract: Rationally independent free fermions are those where sums of single-particle energies multiplied by arbitrary rational coefficients vanish only if the coefficients are all zero. This property guaranties that they have no degeneracies in the many-body spectrum and gives them relaxation properties more similar to those of generic systems. Using classic results from number theory we provide minimal examples of rationally independent free fermion models for every system size in one dimension. This is accomplished by considering a free fermion model with a chemical potential, and hopping terms corresponding to all the divisors of the number of sites, each one with an incommensurate complex amplitude. We further discuss the many-body spectral statistics for these models and show that local probes -- like the ratio of consecutive level spacings -- look very similar to what is expected for the Poisson statistics. We however demonstrate that free fermion models can never have Poisson statistics with an analysis of the moments of the spectral form factor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. C. Gogolin and J. Eisert, Reports on Progress in Physics 79, 056001 (2016).
  2. L. Vidmar and M. Rigol, J. Stat. Mech. Theory Exp. 2016, 064007 (2016).
  3. F. H. L. Essler and M. Fagotti, J. Stat. Mech.: Theory Exp. 2016, 064002 (2016).
  4. B. Doyon, SciPost Phys. Lect. Notes , 18 (2020).
  5. M. Ueda, Nature Reviews Physics 2, 669 (2020).
  6. P. Hayden and J. Preskill, Journal of High Energy Physics 2007, 120 (2007).
  7. Y. Sekino and L. Susskind, Journal of High Energy Physics 2008, 065 (2008).
  8. A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, Advances in Physics 65, 239 (2016), https://doi.org/10.1080/00018732.2016.1198134 .
  9. J. Riddell and N. Pagliaroli,   (2023), arXiv:2307.05417 [quant-ph] .
  10. M. Srednicki, Journal of Physics A: Mathematical and General 32, 1163 (1999).
  11. Y. Huang and A. W. Harrow,   (2020), arXiv:1907.13392 [cond-mat.dis-nn] .
  12. J. Riddell and E. S. Sørensen, Phys. Rev. B 101, 024202 (2020).
  13. H. Wilming, T. R. de Oliveira, A. J. Short,  and J. Eisert, “Equilibration times in closed quantum many-body systems,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders,  and G. Adesso (Springer International Publishing, Cham, 2018) pp. 435–455.
  14. E. J. Torres-Herrera and L. F. Santos, Phys. Rev. A 89, 043620 (2014).
  15. P. Reimann and M. Kastner, New Journal of Physics 14, 043020 (2012).
  16. A. J. Short, New Journal of Physics 13, 053009 (2011).
  17. B. Yoshida and N. Y. Yao, Phys. Rev. X 9, 011006 (2019).
  18. L. C. Venuti and P. Zanardi, Phys. Rev. E 87, 012106 (2013).
  19. E. Solano-Carrillo, Phys. Rev. E 92, 042164 (2015).
  20. E. Kaminishi and T. Mori, Phys. Rev. A 100, 013606 (2019).
  21. M. V. Berry and M. Tabor, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 356, 375 (1977).
  22. E. W. Weisstein, https://mathworld.wolfram.com/  (2002).
  23. Namely, they are not N𝑁Nitalic_N-roots of unity for some N<L𝑁𝐿N<Litalic_N < italic_L.
  24. V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
  25. S. J. Garratt and J. T. Chalker, Phys. Rev. X 11, 021051 (2021a).
  26. S. J. Garratt and J. T. Chalker, Phys. Rev. Lett. 127, 026802 (2021b).
  27. R. E. Prange, Phys. Rev. Lett. 78, 2280 (1997).
  28. More precisely we take t≫τ≫1much-greater-than𝑡𝜏much-greater-than1t\gg\tau\gg 1italic_t ≫ italic_τ ≫ 1.
  29. F. Haake, Quantum Signatures of Chaos, Physics and astronomy online library (Springer, 2001).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 8 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube