Generation of Ultrarelativistic Vortex Leptons with Large Orbital Angular Momenta
Abstract: Ultrarelativistic vortex leptons with intrinsic orbital angular momenta (OAM) have important applications in high energy particle physics, nuclear physics, astrophysics, etc. However, unfortunately, their generation still poses a great challenge. Here, we put forward a novel method for generating ultrarelativistic vortex positrons and electrons through nonlinear Breit-Wheeler (NBW) scattering of vortex $\gamma$ photons. For the first time, a complete angular momentum-resolved scattering theory has been formulated, introducing the angular momentum of laser photons and vortex particles into the conventional NBW scattering framework. We find that vortex positron (electron) can be produced when the outgoing electron (positron) is generated along the collision axis. By unveiling the angular momentum transfer mechanism, we clarify that OAM of the $\gamma$ photon and angular momenta of multiple laser photons are entirely transferred to the generated pairs, leading to the production of ultrarelativistic vortex positrons or electrons with large OAM. Furthermore, we find that the cone opening angle and superposition state of the vortex $\gamma$ photon, distinct characteristics aside from its intrinsic OAM, can be determined via the angular distribution of created pairs in NBW processes. Our method paves the way for investigating strong-field quantum electrodynamics processes concerning the generation and detection of vortex particle beams in intense lasers.
- B. A. Knyazev and V. Serbo, Beams of photons with nonzero projections of orbital angular momenta: new results, Phys. Usp. 61, 449 (2018).
- I. P. Ivanov, Promises and challenges of high-energy vortex states collisions, Prog. Part. Nucl. Phys. 127, 103987 (2022).
- Z.-W. Lu et al., Manipulation of Giant Multipole Resonances via Vortex γ𝛾\gammaitalic_γ Photons, Phys. Rev. Lett. 131, 202502 (2023).
- V. Shiltsev and F. Zimmermann, Modern and Future Colliders, Rev. Mod. Phys. 93, 015006 (2021).
- D. P. Anderle et al., Electron-ion collider in China, Front. Phys. (Beijing) 16, 64701 (2021).
- E. Leader and C. Lorcé, The angular momentum controversy: What’s it all about and does it matter?, Phys. Rept. 541, 163 (2014).
- J. Verbeeck, H. Tian, and P. Schattschneider, Production and application of electron vortex beams, Nature 467, 301 (2010).
- A. J. Silenko, P. Zhang, and L. Zou, Manipulating Twisted Electron Beams, Phys. Rev. Lett. 119, 243903 (2017).
- A. J. Silenko, P. Zhang, and L. Zou, Relativistic quantum dynamics of twisted electron beams in arbitrary electric and magnetic fields, Phys. Rev. Lett. 121, 043202 (2018).
- A. J. Silenko and O. V. Teryaev, Siberian snake-like behavior for an orbital polarization of a beam of twisted (vortex) electrons, Phys. Part. Nucl. Lett. 16, 77 (2019).
- U. D. Jentschura and V. G. Serbo, Generation of high-energy photons with large orbital angular momentum by Compton backscattering, Phys. Rev. Lett. 106, 013001 (2011a).
- U. D. Jentschura and V. G. Serbo, Compton upconversion of twisted photons: backscattering of particles with non-planar wave functions, Eur. Phys. J. C 71, 1 (2011b).
- I. P. Ivanov, Creation of two vortex-entangled beams in a vortex-beam collision with a plane wave, Phys. Rev. A 85, 033813 (2012).
- R. Van Boxem, B. Partoens, and J. Verbeeck, Inelastic electron-vortex-beam scattering, Phys. Rev. A 91, 032703 (2015).
- S. Barnett, Quantum Information (Oxford University Press, 2009).
- G. Breit and J. A. Wheeler, Collision of two light quanta, Phys. Rev. 46, 1087 (1934).
- H. Bethe and W. Heitler, On the Stopping of fast particles and on the creation of positive electrons, Proc. Roy. Soc. Lond. A 146, 83 (1934).
- J. W. Motz, H. A. Olsen, and H. W. Koch, Pair production by photons, Rev. Mod. Phys. 41, 581 (1969).
- Y.-S. Tsai, Pair Production and Bremsstrahlung of Charged Leptons, Rev. Mod. Phys. 46, 815 (1974), [Erratum: Rev.Mod.Phys. 49, 421–423 (1977)].
- S. R. Klein, e+ e- pair production from 10-GeV to 10-ZeV, Radiat. Phys. Chem. 75, 696 (2006).
- M. Aaboud et al. (ATLAS), Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys. 13, 852 (2017).
- J. Adam et al. (STAR), Measurement of e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Momentum and Angular Distributions from Linearly Polarized Photon Collisions, Phys. Rev. Lett. 127, 052302 (2021).
- S. Weber et al., P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines, Matter Radiat. Extremes 2, 149 (2017).
- E. Cartlidge, The light fantastic, Science 359, 382 (2018).
- H.-H. Song, W.-M. Wang, and Y.-T. Li, Dense Polarized Positrons from Laser-Irradiated Foil Targets in the QED Regime, Phys. Rev. Lett. 129, 035001 (2022).
- D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, Complete description of polarization effects in e+e- pair production by a photon in the field of a strong laser wave, Eur. Phys. J. C 40, 27 (2005).
- D. Seipt and B. King, Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes, Phys. Rev. A 102, 052805 (2020).
- G. Torgrimsson, Loops and polarization in strong-field QED, New J. Phys. 23, 065001 (2021).
- S. Tang, Fully polarized nonlinear Breit-Wheeler pair production in pulsed plane waves, Phys. Rev. D 105, 056018 (2022).
- C.-W. Zhang, D.-S. Zhang, and B.-S. Xie, Generation of γ𝛾\gammaitalic_γ-photons and pairs with transverse orbital angular momentum via spatiotemporal optical vortex pulse, (2024), arXiv:2403.16414 [physics.optics] .
- V. I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, J. Russ. Laser Res. 6, 497 (1985).
- See Supplemental Materials for details on the theoretical framework and numerical results for the NBW scattering of vortex γ𝛾\gammaitalic_γ photons in CP lasers.
- K. Y. Bliokh, M. R. Dennis, and F. Nori, Relativistic Electron Vortex Beams: Angular Momentum and Spin-Orbit Interaction, Phys. Rev. Lett. 107, 174802 (2011).
- E. Leader, The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics, Phys. Lett. B 756, 303 (2016).
- Y. Taira, T. Hayakawa, and M. Katoh, Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light, Sci. Rep. 7, 1 (2017).
- O. V. Bogdanov, P. Kazinski, and G. Y. Lazarenko, Semiclassical probability of radiation of twisted photons in the ultrarelativistic limit, Phys. Rev. D 99, 116016 (2019).
- D. L. Burke et al., Positron production in multi - photon light by light scattering, Phys. Rev. Lett. 79, 1626 (1997).
- H. Hu, C. Muller, and C. H. Keitel, Complete QED theory of multiphoton trident pair production in strong laser fields, Phys. Rev. Lett. 105, 080401 (2010).
- A. J. Macleod (LUXE), From theory to precision modelling of strong-field QED in the transition regime, J. Phys. Conf. Ser. 2249, 012022 (2022).
- F. C. Salgado et al., Single particle detection system for strong-field QED experiments, New J. Phys. 24, 015002 (2022).
- H. Abramowicz et al., Conceptual design report for the LUXE experiment, Eur. Phys. J. ST 230, 2445 (2021).
- V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic processes at high energies in oriented single crystals (1998).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.