Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improvement in Semantic Address Matching using Natural Language Processing (2404.11691v1)

Published 17 Apr 2024 in cs.CL

Abstract: Address matching is an important task for many businesses especially delivery and take out companies which help them to take out a certain address from their data warehouse. Existing solution uses similarity of strings, and edit distance algorithms to find out the similar addresses from the address database, but these algorithms could not work effectively with redundant, unstructured, or incomplete address data. This paper discuss semantic Address matching technique, by which we can find out a particular address from a list of possible addresses. We have also reviewed existing practices and their shortcoming. Semantic address matching is an essentially NLP task in the field of deep learning. Through this technique We have the ability to triumph the drawbacks of existing methods like redundant or abbreviated data problems. The solution uses the OCR on invoices to extract the address and create the data pool of addresses. Then this data is fed to the algorithm BM-25 for scoring the best matching entries. Then to observe the best result, this will pass through BERT for giving the best possible result from the similar queries. Our investigation exhibits that our methodology enormously improves both accuracy and review of cutting-edge technology existing techniques.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube