Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stabilizer entropies are monotones for magic-state resource theory (2404.11652v3)

Published 17 Apr 2024 in quant-ph

Abstract: Magic-state resource theory is a powerful tool with applications in quantum error correction, many-body physics, and classical simulation of quantum dynamics. Despite its broad scope, finding tractable resource monotones has been challenging. Stabilizer entropies have recently emerged as promising candidates (being easily computable and experimentally measurable detectors of nonstabilizerness) though their status as true resource monotones has been an open question ever since. In this Letter, we establish the monotonicity of stabilizer entropies for $\alpha \geq 2$ within the context of magic-state resource theory restricted to pure states. Additionally, we show that linear stabilizer entropies serve as strong monotones. Furthermore, we extend stabilizer entropies to mixed states as monotones via convex roof constructions, whose computational evaluation significantly outperforms optimization over stabilizer decompositions for low-rank density matrices. As a direct corollary, we provide improved conversion bounds between resource states, revealing a preferred direction of conversion between magic states. These results conclusively validate the use of stabilizer entropies within magic-state resource theory and establish them as the only known family of monotones that are experimentally measurable and computationally tractable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. S. Bravyi and A. Kitaev, Physical Review A 71, 022316 (2005).
  2. E. T. Campbell and D. E. Browne, Physical Review Letters 104, 030503 (2010).
  3. B. Eastin and E. Knill, Phys. Rev. Lett. 102, 110502 (2009).
  4. D. Gottesman, “The Heisenberg Representation of Quantum Computers,”  (1998), arxiv:quant-ph/9807006 .
  5. S. Aaronson and D. Gottesman, Physical Review A 70, 052328 (2004).
  6. E. Chitambar and G. Gour, Review of Modern Physics 91, 025001 (2019).
  7. G. Passarelli, R. Fazio,  and P. Lucignano, “Nonstabilizerness of permutationally invariant systems,”  (2024), arXiv:2402.08551 [quant-ph] .
  8. T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023a).
  9. G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).
  10. P. S. Tarabunga, E. Tirrito, M. C. Bañuls,  and M. Dalmonte, “Nonstabilizerness via matrix product states in the pauli basis,”  (2024), arXiv:2401.16498 [quant-ph] .
  11. T. Haug, S. Lee,  and M. S. Kim, “Efficient stabilizer entropies for quantum computers,”  (2023), arxiv:2305.19152 [quant-ph] .
  12. M. Heinrich and D. Gross, Quantum 3, 132 (2019/april).
  13. A. Gu, L. Leone, S. Ghosh, J. Eisert, S. Yelin,  and Y. Quek, “A Little Magic Means a Lot,”  (2023), arXiv:2308.16228 [quant-ph] .
  14. M. Hinsche, M. Ioannou, S. Jerbi, L. Leone, J. Eisert,  and J. Carrasco, “Efficient distributed inner product estimation via pauli sampling,”  (In preparation).
  15. R. Brieger, M. Heinrich, I. Roth,  and M. Kliesch, “Stability of classical shadows under gate-dependent noise,”  (2023), arXiv:2310.19947 [quant-ph] .
  16. T. Haug and L. Piroli, “Stabilizer entropies and nonstabilizerness monotones,”  (2023b), arxiv:2303.10152 [cond-mat, physics:quant-ph] .
  17. M. Howard and E. Campbell, Physical Review Letters 118, 090501 (2017).
  18. Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
  19. H. Zhu, R. Kueng, M. Grassl,  and D. Gross, “The Clifford Group Fails Gracefully to Be a Unitary 4-Design,”  (2016), 1609.08172 [quant-ph] .
  20. L. Leone, S. F. E. Oliviero,  and A. Hamma, “Learning t-doped Stabilizer States,”  (2023b), arXiv:2305.15398 [quant-ph] .
  21. S. Bravyi and D. Gosset, Physical Review Letters 116, 250501 (2016).
Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 19 likes.