Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Effective one-dimension reduction of multi-compartment complex systems dynamics (2404.11366v1)

Published 17 Apr 2024 in cond-mat.stat-mech and physics.soc-ph

Abstract: A broad class of systems, including ecological, epidemiological, and sociological ones, are characterized by populations of individuals assigned to specific categories, e.g., a chemical species, an opinion or an epidemic state, that are modeled as compartments. Due to interactions and intrinsic dynamics, individuals are allowed to change category, leading to concentrations varying over time with complex behavior, typical of reaction-diffusion systems. While compartmental modeling provides a powerful framework for studying the dynamics of such populations and describe the spatiotemporal evolution of a system, it mostly relies on deterministic mean-field descriptions to deal with systems with many degrees of freedom. Here, we propose a method to alleviate some of the limitations of compartmental models by capitalizing on tools originating from quantum physics to systematically reduce multi-dimensional systems to an effective one-dimensional representation. Using this reduced system, we are able to not only investigate the mean-field dynamics and their critical behavior, but we can additionally study stochastic representations that capture fundamental features of the system. We demonstrate the validity of our formalism by studying the critical behavior of models widely adopted to study epidemic, ecological and economic systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. L. Freeman et al., The development of social network analysis, A Study in the Sociology of Science 1, 159 (2004).
  2. J. M. Montoya, S. L. Pimm, and R. V. Solé, Ecological networks and their fragility, Nature 442, 259 (2006).
  3. G. Kossinets and D. J. Watts, Empirical analysis of an evolving social network, Science 311, 88 (2006).
  4. C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Reviews of Modern Physics 81, 591 (2009).
  5. J. Bascompte, Structure and dynamics of ecological networks, Science 329, 765 (2010).
  6. V. Belik, T. Geisel, and D. Brockmann, Natural human mobility patterns and spatial spread of infectious diseases, Physical Review X 1, 011001 (2011).
  7. J. Gómez-Gardeñes, D. Soriano-Panos, and A. Arenas, Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks, Nature Physics 14, 391 (2018).
  8. P. Castioni, R. Gallotti, and M. De Domenico, Critical behavior in interdependent spatial spreading processes with distinct characteristic time scales, Communications Physics 4, 131 (2021).
  9. O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology 28, 365 (1990).
  10. O. Diekmann, J. Heesterbeek, and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface 7, 873 (2010).
  11. V. Colizza, R. Pastor-Satorras, and A. Vespignani, Reaction–diffusion processes and metapopulation models in heterogeneous networks, Nature Physics 3, 276 (2007).
  12. V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, Journal of Theoretical Biology 251, 450 (2008).
  13. J. P. Unsleber and M. Reiher, The exploration of chemical reaction networks, Annual Review of Physical Chemistry 71, 121 (2020).
  14. M. Doi, Second quantization representation for classical many-particle system, Journal of Physics A: Mathematical and General 9, 1465 (1976).
  15. L. Peliti, Path integral approach to birth-death processes on a lattice, Journal de Physique 46, 1469 (1985).
  16. R. W. Sterner and J. J. Elser, Ecological stoichiometry: the biology of elements from molecules to the biosphere, in Ecological Stoichiometry (Princeton University Press, 2017).
  17. M. F. Weber and E. Frey, Master equations and the theory of stochastic path integrals, Reports on Progress in Physics 80, 046601 (2017).
  18. V. Elgart and A. Kamenev, Classification of phase transitions in reaction-diffusion models, Physical Review E 74, 041101 (2006).
  19. A. J. Black and A. J. McKane, WKB calculation of an epidemic outbreak distribution, Journal of Statistical Mechanics: Theory and Experiment 2011, P12006 (2011).
  20. E. D. Giuli and C. Scalliet, Dynamical mean-field theory: from ecosystems to reaction networks, Journal of Physics A: Mathematical and Theoretical 55, 474002 (2022).
  21. A. Acín, J. I. Cirac, and M. Lewenstein, Entanglement percolation in quantum networks, Nature Physics 3, 256 (2007).
  22. G. D. Paparo and M. A. Martin-Delgado, Google in a quantum network, Scientific Reports 2, 444 (2012).
  23. M. De Domenico and J. Biamonte, Spectral entropies as information-theoretic tools for complex network comparison, Physical Review X 6, 041062 (2016).
  24. X. Meng, J. Gao, and S. Havlin, Concurrence percolation in quantum networks, Physical Review Letters 126, 170501 (2021).
  25. A. Ghavasieh and M. De Domenico, Diversity of information pathways drives sparsity in real-world networks, Nature Physics , 1 (2024).
  26. K. Itakura, J. Ohkubo, and S. ichi Sasa, Two langevin equations in the doi–peliti formalism, Journal of Physics A: Mathematical and Theoretical 43, 125001 (2010).
  27. M. Assaf and B. Meerson, WKB theory of large deviations in stochastic populations, Journal of Physics A: Mathematical and Theoretical 50, 10.1088/1751-8121/aa669a (2017).
  28. A. Lefèvre and G. Biroli, Dynamics of interacting particle systems: stochastic process and field theory, Journal of Statistical Mechanics: Theory and Experiment 2007, P07024 (2007).
  29. V. Elgart and A. Kamenev, Rare event statistics in reaction-diffusion systems, Physical Review E 70, 041106 (2004).
  30. N. Goldenfeld, Lectures on phase transitions and the renormalization group (CRC Press, 2018).
  31. J. Moser and E. J. Zehnder, Notes on Dynamical Systems (American Mathematical Society, 2005).
  32. N. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007) 3rd ed.
  33. K. Huang, Statistical Mechanics (John Wiley & Sons, 1987).
  34. R. Sole, Nonequilibrium dynamics in conservation biology: Scales, attractors and critical points, Preprints 10.20944/preprints202310.1646.v1 (2023).
  35. A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008).
  36. P. D. Hines, I. Dobson, and P. Rezaei, Cascading power outages propagate locally in an influence graph that is not the actual grid topology, IEEE Transactions on Power Systems 32, 958 (2016).
  37. L. Xing, Cascading failures in internet of things: review and perspectives on reliability and resilience, IEEE Internet of Things Journal 8, 44 (2020).
  38. R. M. May, Will a large complex system be stable?, Nature 238, 413 (1972).
  39. S. Allesina and S. Tang, Stability criteria for complex ecosystems, Nature 483, 205 (2012).
  40. G. Bunin, Ecological communities with Lotka-Volterra dynamics, Physical Review E 95, 042414 (2017).
  41. S. Allesina and S. Tang, The stability–complexity relationship at age 40: a random matrix perspective, Population Ecology 57, 63 (2015).
  42. G. Biroli, G. Bunin, and C. Cammarota, Marginally stable equilibria in critical ecosystems, New Journal of Physics 20, 083051 (2018).
  43. P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180, 29 (2002).
  44. M. Shimada, P. Behrad, and E. D. Giuli, Universal slow dynamics of chemical reaction networks (2024), arXiv:2304.10072 [q-bio.MN] .
  45. G. W. A. Constable, A. J. McKane, and T. Rogers, Stochastic dynamics on slow manifolds, Journal of Physics A: Mathematical and Theoretical 46, 295002 (2013).
  46. A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks (Cambridge University Press, 2008).
  47. N. Crokidakis, A simple mechanism leading to first-order phase transitions in a model of tax evasion, International Journal of Modern Physics C 33, 10.1142/s0129183122500759 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 58 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube