Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compression of quantum shallow-circuit states (2404.11177v3)

Published 17 Apr 2024 in quant-ph

Abstract: Shallow quantum circuits feature not only computational advantages over their classical counterparts but also cutting-edge applications. Storing quantum information generated by shallow circuits is a fundamental question of both theoretical and practical importance that remained largely unexplored. In this work, we show that $N$ copies of an unknown $n$-qubit state generated by a fixed-depth circuit can be compressed into a hybrid memory of $O(n \log_2 N)$ (qu)bits, which achieves the optimal scaling of memory cost. Our work shows that the computational complexity of resources can significantly impact the rate of quantum information processing, offering a unique and unified view of quantum Shannon theory and quantum computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Bravyi, D. Gosset, and R. König, Science 362, 308 (2018).
  2. J. Preskill, Quantum 2, 79 (2018).
  3. N. Yu and T.-C. Wei, arXiv:2303.08938  (2023).
  4. V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
  5. V. Giovannetti, S. Lloyd, and L. Maccone, Physical Review Letters 96, 010401 (2006).
  6. V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
  7. G. D’Ariano and P. L. Presti, Physical Review Letters 86, 4195 (2001).
  8. G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, Advances in Imaging and Electron Physics 128, S1076 (2003).
  9. H.-Y. Huang, R. Kueng, and J. Preskill, Nature Physics 16, 1050 (2020).
  10. N. Gisin and S. Massar, Physical Review Letters 79, 2153 (1997).
  11. R. F. Werner, Physical Review A 58, 1827 (1998).
  12. D. Bruss, A. Ekert, and C. Macchiavello, Physical Review Letters 81, 2598 (1998).
  13. C. W. Helstrom, Journal of Statistical Physics 1, 231 (1969).
  14. H. Yuen, R. Kennedy, and M. Lax, IEEE Transactions on Information Theory 21, 125 (1975).
  15. C. W. Helstrom, Quantum Detection and Estimation Theory, Vol. 123 (Elsevier Science, 1976).
  16. A. S. Holevo, Theory of Probability & Its Applications 23, 411 (1979).
  17. S. Lloyd, M. Mohseni, and P. Rebentrost, Nature Physics 10, 631 (2014).
  18. M. Plesch and V. Bužek, Physical Review A 81, 032317 (2010).
  19. M. A. Nielsen and I. L. Chuang, Physical Review Letters 79, 321 (1997).
  20. S. Ishizaka and T. Hiroshima, Physical Review Letters 101, 240501 (2008).
  21. A. M. Kubicki, C. Palazuelos, and D. Pérez-García, Physical Review Letters 122, 080505 (2019).
  22. M. Sedlák, A. Bisio, and M. Ziman, Physical Review Letters 122, 170502 (2019).
  23. M. Guţă and J. Kahn, Physical Review A 73, 052108 (2006).
  24. M. Guţă and A. Jenčová, Communications in Mathematical Physics 276, 341 (2007).
  25. J. Kahn and M. Guţă, Communications in Mathematical Physics 289, 597 (2009).
  26. R. D. Gill and M. I. Guţă, in From Probability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of Jon A. Wellner, Vol. 9 (Institute of Mathematical Statistics, 2013) pp. 105–128.
  27. F. Girotti, A. Godley, and M. Guţă, arXiv:2310.06767  (2023).
  28. M. Suzuki, Communications in Mathematical Physics 57, 193 (1977).
  29. C. M. Caves, Physical Review D 26, 1817 (1982).
  30. A. S. Holevo, Problemy Peredachi Informatsii 9, 3 (1973).
  31. R. Alicki and M. Fannes, Journal of Physics A 37, L55 (2004).
  32. M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, 2017).
  33. S. Luo and Q. Zhang, Physical Review A 69, 032106 (2004).
  34. A. A. W. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, Ph.D. thesis, Massachusetts Institute of Technology (2005).
  35. D. Bacon, I. L. Chuang, and A. W. Harrow, Physical Review Letters 97, 170502 (2006).
  36. H. Krovi, Quantum 3, 122 (2019).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.