Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Amplitude-Aware Lossy Compression for Quantum Circuit Simulation (1811.05140v3)

Published 13 Nov 2018 in quant-ph and cs.ET

Abstract: Classical simulation of quantum circuits is crucial for evaluating and validating the design of new quantum algorithms. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement for the simulations. In this paper, we present a new data reduction technique to reduce the memory requirement of quantum circuit simulations. We apply our amplitude-aware lossy compression technique to the quantum state amplitude vector to trade the computation time and fidelity for memory space. The experimental results show that our simulator only needs 1/16 of the original memory requirement to simulate Quantum Fourier Transform circuits with 99.95% fidelity. The reduction amount of memory requirement suggests that we could increase 4 qubits in the quantum circuit simulation comparing to the simulation without our technique. Additionally, for some specific circuits, like Grover's search, we could increase the simulation size by 18 qubits.

Citations (9)

Summary

We haven't generated a summary for this paper yet.