Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AKGNet: Attribute Knowledge-Guided Unsupervised Lung-Infected Area Segmentation (2404.11008v1)

Published 17 Apr 2024 in cs.CV and cs.AI

Abstract: Lung-infected area segmentation is crucial for assessing the severity of lung diseases. However, existing image-text multi-modal methods typically rely on labour-intensive annotations for model training, posing challenges regarding time and expertise. To address this issue, we propose a novel attribute knowledge-guided framework for unsupervised lung-infected area segmentation (AKGNet), which achieves segmentation solely based on image-text data without any mask annotation. AKGNet facilitates text attribute knowledge learning, attribute-image cross-attention fusion, and high-confidence-based pseudo-label exploration simultaneously. It can learn statistical information and capture spatial correlations between image and text attributes in the embedding space, iteratively refining the mask to enhance segmentation. Specifically, we introduce a text attribute knowledge learning module by extracting attribute knowledge and incorporating it into feature representations, enabling the model to learn statistical information and adapt to different attributes. Moreover, we devise an attribute-image cross-attention module by calculating the correlation between attributes and images in the embedding space to capture spatial dependency information, thus selectively focusing on relevant regions while filtering irrelevant areas. Finally, a self-training mask improvement process is employed by generating pseudo-labels using high-confidence predictions to iteratively enhance the mask and segmentation. Experimental results on a benchmark medical image dataset demonstrate the superior performance of our method compared to state-of-the-art segmentation techniques in unsupervised scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.