SPONGE: Open-Source Designs of Modular Articulated Soft Robots
Abstract: Soft-robot designs are manifold, but only a few are publicly available. Often, these are only briefly described in their publications. This complicates reproduction, and hinders the reproducibility and comparability of research results. If the designs were uniform and open source, validating researched methods on real benchmark systems would be possible. To address this, we present two variants of a soft pneumatic robot with antagonistic bellows as open source. Starting from a semi-modular design with multiple cables and tubes routed through the robot body, the transition to a fully modular robot with integrated microvalves and serial communication is highlighted. Modularity in terms of stackability, actuation, and communication is achieved, which is the crucial requirement for building soft robots with many degrees of freedom and high dexterity for real-world tasks. Both systems are compared regarding their respective advantages and disadvantages. The robots' functionality is demonstrated in experiments on airtightness, gravitational influence, position control with mean tracking errors of <3 deg, and long-term operation of cast and printed bellows. All soft- and hardware files required for reproduction are provided.
- A. L. Orekhov, C. Abah, and N. Simaan, “Snake-like robots for minimally invasive, single-port, and intraluminal surgeries,” The Encyclopedia of Medical Robotics, pp. 203–243, 2018.
- J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical applications: A survey,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1261–1280, 2015.
- J. K. Hopkins, B. W. Spranklin, and S. K. Gupta, “A survey of snake-inspired robot designs,” Bioinspir. Biomim., vol. 4, no. 2, 2009.
- T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strategies for soft robotic manipulators: A survey,” Soft Robot., vol. 5, no. 2, pp. 149–163, 2018.
- C. Della Santina, C. Piazza, G. M. Gasparri, M. Bonilla, M. G. Catalano, G. Grioli, M. Garabini, and A. Bicchi, “The quest for natural machine motion: An open platform to fast-prototyping articulated soft robots,” IEEE Robot. Autom. Mag., vol. 24, no. 1, pp. 48–56, 2017.
- R. M. Grassmann, S. Lilge, P. Le, and J. Burgner-Kahrs, “CTCR prototype development: An obstacle in the research community?” in Robot. Sci. Syst., Workshop Robot. Retrospectives, 2020.
- T.-L. Habich, S. Kleinjohann, and M. Schappler, “Learning-based position and stiffness feedforward control of antagonistic soft pneumatic actuators using Gaussian processes,” in IEEE Int. Conf. Soft Robot., 2023, pp. 1–7.
- E. H. Skorina, W. Tao, F. Chen, M. Luo, and C. D. Onal, “Motion control of a soft-actuated modular manipulator,” in IEEE Int. Conf. Robot. Autom., 2016, pp. 4997–5002.
- C. M. Best, M. T. Gillespie, P. Hyatt, L. Rupert, V. Sherrod, and M. D. Killpack, “A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid,” IEEE Robot. Automat. Mag., vol. 23, no. 3, pp. 75–84, 2016.
- X. Chen, X. Zhang, H. Liu, and Y. Huang, “Design and development of a soft robotic manipulator,” Int. J. Mech. Mater. Des., vol. 16, no. 2, pp. 309–321, 2020.
- B. T. Phillips, K. P. Becker, S. Kurumaya, K. C. Galloway, G. Whittredge, D. M. Vogt, C. B. Teeple, M. H. Rosen, V. A. Pieribone, D. F. Gruber, and R. J. Wood, “A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration,” Sci. Rep., vol. 8, no. 1, p. 14779, 2018.
- Y. Xu, H. Li, H. Li, G. Fang, and H. Jia, “Path planning and intelligent control of a soft robot arm based on gas-structure coupling actuators,” Front. Mater., vol. 9, 2022.
- N. Wang, B. Chen, X. Ge, X. Zhang, and W. Wang, “Modular crawling robots using soft pneumatic actuators,” Front. Mech. Eng., vol. 16, no. 1, pp. 163–175, 2021.
- M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A. Menciassi, “Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach,” Soft Robot., vol. 1, no. 2, pp. 122–131, 2014.
- “FeTCh Mark 1 Manipulator.” [Online]. Available: https://softroboticstoolkit.com/fetch
- H. Jiang, X. Liu, X. Chen, Z. Wang, Y. Jin, and X. Chen, “Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks,” in IEEE Int. Conf. Robot. Biomim., 2016, pp. 350–356.
- D. Bruder, M. A. Graule, C. B. Teeple, and R. J. Wood, “Increasing the payload capacity of soft robot arms by localized stiffening,” Sci. Robot., vol. 8, no. 81, 2023.
- S. Hoang, K. Karydis, P. Brisk, and W. H. Grover, “A pneumatic random-access memory for controlling soft robots,” PloS one, vol. 16, no. 7, 2021.
- P. Rothemund, A. Ainla, L. Belding, D. J. Preston, S. Kurihara, Z. Suo, and G. M. Whitesides, “A soft, bistable valve for autonomous control of soft actuators,” Sci. Robot., vol. 3, no. 16, 2018.
- Y. Zhai, A. de Boer, J. Yan, B. Shih, M. Faber, J. Speros, R. Gupta, and M. T. Tolley, “Desktop fabrication of monolithic soft robotic devices with embedded fluidic control circuits,” Sci. Robot., vol. 8, no. 79, 2023.
- S. Li, S. A. Awale, K. E. Bacher, T. J. Buchner, C. Della Santina, R. J. Wood, and D. Rus, “Scaling up soft robotics: A meter-scale, modular, and reconfigurable soft robotic system,” Soft Robot., vol. 9, no. 2, pp. 324–336, 2022.
- B. van Raemdonck, E. Milana, M. de Volder, D. Reynaerts, and B. Gorissen, “Nonlinear inflatable actuators for distributed control in soft robots,” Adv. Mater., vol. 35, no. 35, 2023.
- W. D. Null, J. Menezes, and Y. Z., “Development of a modular and submersible soft robotic arm and corresponding learned kinematics models,” in IEEE Int. Conf. Soft Robot., 2023, pp. 1–6.
- C. D. Onal and D. Rus, “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspir. Biomim., vol. 8, no. 2, 2013.
- H. Ohno and S. Hirose, “Study on slime robot (proposal of slime robot and design of slim slime robot),” in IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2000, pp. 2218–2223.
- M. A. Robertson and J. Paik, “New soft robots really suck: Vacuum-powered systems empower diverse capabilities,” Sci. Robot., vol. 2, no. 9, 2017.
- M. A. Robertson, O. C. Kara, and J. Paik, “Soft pneumatic actuator-driven origami-inspired modular robotic ’pneumagami’,” Int. J. Robot. Res., vol. 40, no. 1, pp. 72–85, 2021.
- Z. Wan, Y. Sun, Y. Qin, E. H. Skorina, R. Gasoto, M. Luo, J. Fu, and C. D. Onal, “Design, analysis, and real-time simulation of a 3D soft robotic snake,” Soft Robot., vol. 10, no. 2, pp. 258–268, 2023.
- K. Ikuta, H. Ichikawa, K. Suzuki, and D. Yajima, “Multi-degree of freedom hydraulic pressure driven safety active catheter,” in IEEE Int. Conf. Robot. Autom., 2006, pp. 4161–4166.
- P. Liljebäck, Ø. Stavdahl, and K. Y. Pettersen, “Modular pneumatic snake robot: 3D modelling, implementation and control,” Model., Ident. and Control, vol. 29, no. 1, pp. 21–28, 2008.
- B. Deutschmann, J. Reinecke, and A. Dietrich, “Open source tendon-driven continuum mechanism: A platform for research in soft robotics,” in IEEE Int. Conf. Soft Robot., 2022, pp. 54–61.
- R. M. Grassmann, C. Shentu, T. Hamoda, P. T. Dewi, and J. Burgner-Kahrs, “Open continuum robotics-one actuation module to create them all,” Front. Robot. AI, vol. 11, 2024.
- J. Shi, W. Gaozhang, H. Jin, G. Shi, and H. A. Wurdemann, “Characterisation and control platform for pneumatically driven soft robots: Design and applications,” in IEEE Int. Conf. Soft Robot., 2023, pp. 1–8.
- B. J. Caasenbrood, A. Y. Pogromsky, and H. Nijmeijer, “Sorotoki: A Matlab toolkit for design, modeling, and control of soft robots,” IEEE Access, p. 1, 2024.
- D. P. Holland, E. J. Park, P. Polygerinos, G. J. Bennett, and C. J. Walsh, “The Soft Robotics Toolkit: Shared resources for research and design,” Soft Robot., vol. 1, no. 3, pp. 224–230, 2014.
- C. Laschi, T. G. Thuruthel, F. Lida, R. Merzouki, and E. Falotico, “Learning-based control strategies for soft robots: Theory, achievements, and future challenges,” IEEE Control Syst., vol. 43, no. 3, pp. 100–113, 2023.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.