Papers
Topics
Authors
Recent
2000 character limit reached

A spin-refrigerated cavity quantum electrodynamic sensor

Published 16 Apr 2024 in quant-ph | (2404.10628v1)

Abstract: Quantum sensors based on solid-state defects, in particular nitrogen-vacancy (NV) centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields. However, the sensitivity of leading NV spin ensemble sensors remains far from the intrinsic spin-projection noise limit. Here we move towards this quantum limit of performance by introducing (i) a cavity quantum electrodynamic (cQED) hybrid system operating in the strong coupling regime, which enables high readout fidelity of an NV ensemble using microwave homodyne detection; (ii) a comprehensive nonlinear model of the cQED sensor operation, including NV ensemble inhomogeneity and optical polarization; and (iii) ``spin refrigeration'' where the optically-polarized spin ensemble sharply reduces the ambient-temperature microwave thermal noise, resulting in enhanced sensitivity. Applying these advances to magnetometry, we demonstrate a broadband sensitivity of 580 fT/$\sqrt{\mathrm{Hz}}$ around 15 kHz in ambient conditions. We then discuss the implications of this model for design of future magnetometers, including devices approaching 12 fT/$\sqrt{\mathrm{Hz}}$ sensitivity. Applications of these techniques extend to the fields of gyroscope and clock technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
  2. J. H. N. Loubser and J. A. van Wyk, Electron spin resonance in the study of diamond, Reports on Progress in Physics 41, 1201 (1978).
  3. M. O. Scully and M. S. Zubairy, Quantum optics (1999).
  4. P. R. Berman and V. S. Malinovsky, Principles of laser spectroscopy and quantum optics (Princeton University Press, 2011).
  5. C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985).
  6. D. O. Krimer, M. Zens, and S. Rotter, Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity. i. semiclassical approach, Phys. Rev. A 100, 013855 (2019).
  7. M. Zens, D. O. Krimer, and S. Rotter, Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity. ii. semiclassical-to-quantum boundary, Phys. Rev. A 100, 013856 (2019).
  8. Z. Kurucz, J. H. Wesenberg, and K. Mølmer, Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity, Phys. Rev. A 83, 053852 (2011).
  9. H. Choi and D. Englund, Ultrastrong magnetic light-matter interaction with cavity mode engineering, Communications Physics 6, 105 (2023).
  10. S. Haroche and J. M. Raimond, Radiative properties of rydberg states in resonant cavities, in Advances in Atomic and Molecular Physics, Vol. 20, edited by D. Bates and B. Bederson (Academic Press, 1985) pp. 347–411.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 11 likes about this paper.