Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Pulse engineering via projection of response functions (2404.10462v4)

Published 16 Apr 2024 in quant-ph

Abstract: We present an iterative optimal control method of quantum systems, aimed at an implementation of a desired operation with optimal fidelity. The update step of the method is based on the linear response of the fidelity to the control operators, and its projection onto the mode functions of the corresponding operator. Our method extends methods such as gradient-ascent pulse engineering (GRAPE) and variational quantum algorithms, by determining the fidelity gradient in a hyperparameter-free manner, and using it for a multiparameter update, capitalizing on the multimode overlap of the perturbation and the mode functions. This directly reduces the number of dynamical trajectories that need to be evaluated in order to update a set of parameters. We demonstrate this approach, and compare it to the standard GRAPE algorithm, for the example of a quantum gate on two qubits, demonstrating a clear improvement in convergence and optimal fidelity of the generated protocol.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. J. P. Palao and R. Kosloff, Optimal control theory for unitary transformations, Phys. Rev. A 68, 062308 (2003).
  2. P. Rebentrost and F. K. Wilhelm, Optimal control of a leaking qubit, Phys. Rev. B 79, 060507 (2009).
  3. D. J. Egger and F. K. Wilhelm, Optimized controlled-z gates for two superconducting qubits coupled through a resonator, Superconductor Science and Technology 27, 014001 (2013).
  4. S. Jandura and G. Pupillo, Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms, Quantum 6, 712 (2022).
  5. R. de Keijzer, O. Tse, and S. Kokkelmans, Pulse based Variational Quantum Optimal Control for hybrid quantum computing, Quantum 7, 908 (2023).
  6. L. Bittel, J. Watty, and M. Kliesch, Fast gradient estimation for variational quantum algorithms (2022), arXiv:2210.06484 [quant-ph] .
  7. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  8. L. Bittel and M. Kliesch, Training variational quantum algorithms is np-hard, Phys. Rev. Lett. 127, 120502 (2021).
  9. E. R. Anschuetz and B. T. Kiani, Quantum variational algorithms are swamped with traps, Nature Communications 13, 7760 (2022).
  10. L. Broers and L. Mathey, Mitigated barren plateaus in the time-nonlocal optimization of analog quantum-algorithm protocols, Phys. Rev. Res. 6, 013076 (2024).
  11. A. Castro and I. V. Tokatly, Quantum optimal control theory in the linear response formalism, Phys. Rev. A 84, 033410 (2011).
  12. P. Doria, T. Calarco, and S. Montangero, Optimal control technique for many-body quantum dynamics, Phys. Rev. Lett. 106, 190501 (2011).
  13. T. Caneva, T. Calarco, and S. Montangero, Chopped random-basis quantum optimization, Phys. Rev. A 84, 022326 (2011).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.