Nonlinearity-enhanced quantum sensing in Stark probes
Abstract: Stark systems in which a linear gradient field is applied across a many-body system have recently been proposed for quantum sensing. Here, we explore sensing capacity of Stark probes, in both single-particle and many-body interacting systems, for estimating nonlinear forms of the gradient fields. Our analysis reveals that, this estimation can achieve super-Heisenberg scaling precision that grows linearly by increasing the nonlinearity. Specifically, we find a universal algebraic relation between the scaling of the precision and the degree of the nonlinearity. This universal behavior remains valid in both single-particle and many-body interacting probes and reflects itself in the properties of the phase transition from an extended to a localized phase, obtained through establishing a comprehensive finite-size scaling analysis. Considering a parabolic gradient potential composed of both linear and nonlinear fields, we used multi-parameter estimation methodology to estimate the components of the gradient potential. The phase diagram of the system is determined in terms of both linear and nonlinear gradient fields showing how the nonlocalized phase turns into a localized one as the Stark fields increase. The sensing precision of both linear and nonlinear Stark fields follows the same universal algebraic relation that was found for the case of single parameter sensing. We demonstrate that simple and experimentally available measurements can reach the theoretical precision bounds. Finally, we show that quantum enhanced sensitivity is still achievable even when we incorporate the preparation time of the probe into our resource analysis.
- S. Roy and S. L. Braunstein, Exponentially enhanced quantum metrology, Phys. Rev. Lett. 100, 220501 (2008).
- M. G. Paris, Quantum estimation for quantum technology, Int. J. Quantum Inf. 7, 125 (2009).
- K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum states made to measure, Nat. Photon. 3, 673 (2009).
- M. Beau and A. del Campo, Nonlinear quantum metrology of many-body open systems, Phys. Rev. Lett. 119, 010403 (2017).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- R. Yousefjani, S. Salimi, and A. Khorashad, Enhancement of frequency estimation by spatially correlated environments, Ann. Phys. 381, 80 (2017a).
- C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, in Breakthroughs in statistics (Springer, 1992) pp. 235–247.
- S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).
- H. Cramér, Mathematical methods of statistics (Princeton university press, 1999).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit, Science 306, 1330 (2004).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photon. 5, 222 (2011).
- F. Fröwis and W. Dür, Stable macroscopic quantum superpositions, Phys. Rev. Lett. 106, 110402 (2011).
- R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1 (2012).
- W. Dür and H.-J. Briegel, Stability of macroscopic entanglement under decoherence, Phys. Rev. Lett. 92, 180403 (2004).
- Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, Magnetic field sensing beyond the standard quantum limit under the effect of decoherence, Phys. Rev. A 84, 012103 (2011).
- A. Shaji and C. M. Caves, Qubit metrology and decoherence, Phys. Rev. A 76, 032111 (2007).
- A. Bhattacharyya, A. Ghoshal, and U. Sen, Tunable disorder in accessories can enhance precision of atomic clocks (2024), arXiv:2212.08523 .
- S. Pang and T. A. Brun, Quantum metrology for a general Hamiltonian parameter, Phys. Rev. A 90, 022117 (2014).
- M. Raghunandan, J. Wrachtrup, and H. Weimer, High-density quantum sensing with dissipative first order transitions, Phys. Rev. Lett. 120, 150501 (2018).
- L.-P. Yang and Z. Jacob, Engineering first-order quantum phase transitions for weak signal detection, Journal of Applied Physics 126, 174502 (2019).
- P. Zanardi and N. Paunković, Ground state overlap and quantum phase transitions, Phys. Rev. E 74, 031123 (2006).
- P. Zanardi, M. G. Paris, and L. C. Venuti, Quantum criticality as a resource for quantum estimation, Phys. Rev. A 78, 042105 (2008).
- S.-J. Gu, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24, 4371 (2010).
- S. Gammelmark and K. Mølmer, Phase transitions and Heisenberg limited metrology in an Ising chain interacting with a single-mode cavity field, New J. Phys. 13, 053035 (2011).
- M. Skotiniotis, P. Sekatski, and W. Dür, Quantum metrology for the Ising Hamiltonian with transverse magnetic field, New J. Phys. 17, 073032 (2015).
- B.-B. Wei, Fidelity susceptibility in one-dimensional disordered lattice models, Phys. Rev. A 99, 042117 (2019).
- V. Montenegro, U. Mishra, and A. Bayat, Global sensing and its impact for quantum many-body probes with criticality, Phys. Rev. Lett. 126, 200501 (2021).
- R. Salvia, M. Mehboudi, and M. Perarnau-Llobet, Critical quantum metrology assisted by real-time feedback control, Phys. Rev. Lett. 130, 240803 (2023).
- S. Fernández-Lorenzo and D. Porras, Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources, Phys. Rev. A 96, 013817 (2017).
- S. Alipour, M. Mehboudi, and A. T. Rezakhani, Quantum metrology in open systems: Dissipative cramér-rao bound, Phys. Rev. Lett. 112, 120405 (2014).
- F. Iemini, R. Fazio, and A. Sanpera, Floquet time-crystals as sensors of ac fields, arXiv:2306.03927 (2023).
- U. Mishra and A. Bayat, Driving enhanced quantum sensing in partially accessible many-body systems, Phys. Rev. Lett. 127, 080504 (2021).
- U. Mishra and A. Bayat, Integrable quantum many-body sensors for ac field sensing, Sci. Rep. 12, 1 (2022).
- J. C. Budich and E. J. Bergholtz, Non-Hermitian topological sensors, Phys. Rev. Lett. 125, 180403 (2020a).
- F. Koch and J. C. Budich, Quantum non-Hermitian topological sensors, Phys. Rev. Res. 4, 013113 (2022).
- X. He, R. Yousefjani, and A. Bayat, Stark localization as a resource for weak-field sensing with super-Heisenberg precision, Phys. Rev. Lett. 131, 010801 (2023).
- R. Yousefjani, X. He, and A. Bayat, Long-range interacting Stark many-body probes with super-Heisenberg precision, Chin. Phys. B 32, 100313 (2023).
- J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014).
- J. C. Budich and E. J. Bergholtz, Non-Hermitian topological sensors, Phys. Rev. Lett. 125, 180403 (2020b).
- A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics, Nat. Commun. 11, 5382 (2020).
- J. Rubio, J. Anders, and L. A. Correa, Global quantum thermometry, Phys. Rev. Lett. 127, 190402 (2021).
- G. H. Wannier, Wave functions and effective Hamiltonian for Bloch electrons in an electric field, Phys. Rev. 117, 432 (1960).
- H. Fukuyama, R. A. Bari, and H. C. Fogedby, Tightly bound electrons in a uniform electric field, Phys. Rev. B 8, 5579 (1973).
- M. Holthaus, G. Ristow, and D. Hone, Random lattices in combined ac and dc electric fields: Anderson vs. Wannier-Stark localization, EPL 32, 241 (1995).
- A. Kolovsky and H. Korsch, Bloch oscillations of cold atoms in two-dimensional optical lattices, Phys. Rev. A 67, 063601 (2003).
- A. R. Kolovsky, Interplay between Anderson and Stark localization in 2d lattices, Phys. Rev. Lett. 101, 190602 (2008).
- A. R. Kolovsky and E. N. Bulgakov, Wannier-Stark states and Bloch oscillations in the honeycomb lattice, Phys. Rev. A 87, 033602 (2013).
- E. van Nieuwenburg, Y. Baum, and G. Refael, From Bloch oscillations to many-body localization in clean interacting systems, Proc. Natl. Acad. Sci. U.S.A. 116, 9269 (2019).
- L.-N. Wu and A. Eckardt, Bath-induced decay of Stark many-body localization, Phys. Rev. Lett. 123, 030602 (2019).
- D. S. Bhakuni, R. Nehra, and A. Sharma, Drive-induced many-body localization and coherent destruction of Stark many-body localization, Phys. Rev. B 102, 024201 (2020).
- D. S. Bhakuni and A. Sharma, Stability of electric field driven many-body localization in an interacting long-range hopping model, Phys. Rev. B 102, 085133 (2020).
- R. Yao and J. Zakrzewski, Many-body localization of bosons in an optical lattice: Dynamics in disorder-free potentials, Phys. Rev. B 102, 104203 (2020).
- T. Chanda, R. Yao, and J. Zakrzewski, Coexistence of localized and extended phases: Many-body localization in a harmonic trap, Phys. Rev. Res. 2, 032039 (2020).
- Y.-Y. Wang, Z.-H. Sun, and H. Fan, Stark many-body localization transitions in superconducting circuits, Phys. Rev. B 104, 205122 (2021).
- R. Yao, T. Chanda, and J. Zakrzewski, Many-body localization in tilted and harmonic potentials, Phys. Rev. B 104, 014201 (2021).
- E. V. Doggen, I. V. Gornyi, and D. G. Polyakov, Many-body localization in a tilted potential in two dimensions, Phys. Rev. B 105, 134204 (2022).
- G. Zisling, D. M. Kennes, and Y. B. Lev, Transport in Stark many-body localized systems, Phys. Rev. B 105, L140201 (2022).
- A. L. Burin, Exact solution of the minimalist Stark many-body localization problem in terms of spin-pair hopping, Phys. Rev. B 105, 184206 (2022).
- I. Lukin, Y. V. Slyusarenko, and A. Sotnikov, Many-body localization in a quantum gas with long-range interactions and linear external potential, Phys. Rev. B 105, 184307 (2022).
- E. Vernek, Robustness of Stark many-body localization in the J1−J2subscript𝐽1subscript𝐽2{J}_{1}\text{$-$}{J}_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Heisenberg model, Phys. Rev. B 105, 075124 (2022).
- E. V. H. Doggen, I. V. Gornyi, and D. G. Polyakov, Stark many-body localization: Evidence for Hilbert-space shattering, Phys. Rev. B 103, L100202 (2021).
- A. Sahoo, U. Mishra, and D. Rakshit, Localization-driven quantum sensing, Phys. Rev. A 109, L030601 (2024).
- S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Compatibility in multiparameter quantum metrology, Phys. Rev. A 94, 052108 (2016).
- C. W. Helstrom, Quantum detection and estimation theory (Academic Press, 1976).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.