Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Strong Markov dissipation in driven-dissipative quantum systems (2404.10195v1)

Published 16 Apr 2024 in cond-mat.stat-mech and quant-ph

Abstract: The Lindblad equation, which describes Markovian quantum dynamics under dissipation, is usually derived under the weak system-bath coupling assumption. Strong system-bath coupling often leads to non-Markov evolution. The singular-coupling limit is known as an exception: it yields a Lindblad equation with an arbitrary strength of dissipation. However, the singular-coupling limit requires high-temperature limit of the bath, and hence the system ends up in a trivial infinite-temperature state, which is not desirable in the context of quantum control. In this work, it is shown that we can derive a Markovian Lindblad equation for an arbitrary strength of the system-bath coupling by considering a new scaling limit that is called the singular-driving limit, which combines the singular-coupling limit and fast periodic driving. In contrast to the standard singular-coupling limit, an interplay between dissipation and periodic driving results in a nontrivial steady state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Eckardt, A.: Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017) https://doi.org/10.1103/RevModPhys.89.011004 Oka and Kitamura [2019] Oka, T., Kitamura, S.: Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387 (2019) https://doi.org/10.1146/annurev-conmatphys-031218-013423 Diehl et al. [2008] Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008) https://doi.org/10.1038/nphys1073 Verstraete et al. [2009] Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Oka, T., Kitamura, S.: Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387 (2019) https://doi.org/10.1146/annurev-conmatphys-031218-013423 Diehl et al. [2008] Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008) https://doi.org/10.1038/nphys1073 Verstraete et al. [2009] Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008) https://doi.org/10.1038/nphys1073 Verstraete et al. [2009] Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  2. Oka, T., Kitamura, S.: Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387 (2019) https://doi.org/10.1146/annurev-conmatphys-031218-013423 Diehl et al. [2008] Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008) https://doi.org/10.1038/nphys1073 Verstraete et al. [2009] Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008) https://doi.org/10.1038/nphys1073 Verstraete et al. [2009] Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  3. Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008) https://doi.org/10.1038/nphys1073 Verstraete et al. [2009] Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  4. Verstraete, F., Wolf, M.M., Ignacio Cirac, J.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009) https://doi.org/10.1038/nphys1342 Breuer and Petruccione [2002] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  5. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002) Gorini et al. [1976] Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  6. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976) https://doi.org/10.1063/1.522979 Lindblad [1976] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  7. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) https://doi.org/10.1007/BF01608499 De Vega and Alonso [2017] De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  8. De Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017) https://doi.org/10.1103/RevModPhys.89.015001 Wichterich et al. [2007] Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  9. Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007) https://doi.org/10.1103/PhysRevE.76.031115 Schaller and Brandes [2008] Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  10. Schaller, G., Brandes, T.: Preservation of positivity by dynamical coarse graining. Phys. Rev. A 78, 022106 (2008) https://doi.org/10.1103/PhysRevA.78.022106 Benatti et al. [2010] Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  11. Benatti, F., Floreanini, R., Marzolino, U.: Entangling two unequal atoms through a common bath. Phys. Rev. A 81, 012105 (2010) https://doi.org/10.1103/PhysRevA.81.012105 Kiršanskas et al. [2018] Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  12. Kiršanskas, G., Franckié, M., Wacker, A.: Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys. Rev. B 97, 035432 (2018) https://doi.org/10.1103/PhysRevB.97.035432 Nathan and Rudner [2020] Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  13. Nathan, F., Rudner, M.S.: Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020) https://doi.org/10.1103/PhysRevB.102.115109 Becker et al. [2021] Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  14. Becker, T., Wu, L.N., Eckardt, A.: Lindbladian approximation beyond ultraweak coupling. Phys. Rev. E 104, 014110 (2021) https://doi.org/10.1103/PhysRevE.104.014110 Mori [2023] Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  15. Mori, T.: Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 14, 35 (2023) https://doi.org/10.1146/annurev-conmatphys-040721-015537 Mori et al. [2016] Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  16. Mori, T., Kuwahara, T., Saito, K.: Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. Phys. Rev. Lett. 116, 120401 (2016) https://doi.org/10.1103/PhysRevLett.116.120401 Kuwahara et al. [2016] Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  17. Kuwahara, T., Mori, T., Saito, K.: Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. (N. Y). 367, 96 (2016) https://doi.org/10.1016/j.aop.2016.01.012 Abanin et al. [2017a] Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  18. Abanin, D.A., De Roeck, W., Ho, W.W., Huveneers, F.: Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017) https://doi.org/10.1103/PhysRevB.95.014112 Abanin et al. [2017b] Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  19. Abanin, D., De Roeck, W., Ho, W.W., Huveneers, F.: A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems. Commun. Math. Phys. 354, 809 (2017) https://doi.org/10.1007/s00220-017-2930-x D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  20. D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016) https://doi.org/10.1080/00018732.2016.1198134 Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  21. Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 51, 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf Shirai and Mori [2020] Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  22. Shirai, T., Mori, T.: Thermalization in open many-body systems based on eigenstate thermalization hypothesis. Phys. Rev. E 101, 042116 (2020) https://doi.org/10.1103/physreve.101.042116 Breuer et al. [2000] Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  23. Breuer, H.P., Huber, W., Petruccione, F.: Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4883 (2000) https://doi.org/10.1103/PhysRevE.61.4883 Kohn [2001] Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  24. Kohn, W.: Periodic thermodynamics. J. Stat. Phys. 103, 417 (2001) https://doi.org/10.1023/A:1010327828445 Shirai et al. [2015] Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  25. Shirai, T., Mori, T., Miyashita, S.: Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015) https://doi.org/10.1103/PhysRevE.91.030101 Shirai et al. [2016] Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  26. Shirai, T., Thingna, J., Mori, T., Denisov, S., Hänggi, P., Miyashita, S.: Effective Floquet-Gibbs states for dissipative quantum systems. New J. Phys. 18, 1–13 (2016) https://doi.org/10.1088/1367-2630/18/5/053008 Palmer [1977] Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  27. Palmer, P.F.: The singular coupling and weak coupling limits. J. Math. Phys. 18(3), 527–529 (1977) https://doi.org/10.1063/1.523296 Hepp and Lieb [1973] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  28. Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973) https://doi.org/10.5169/seals-114496 Kraus et al. [2008] Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  29. Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008) https://doi.org/10.1103/PhysRevA.78.042307 Seifert [2016] Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  30. Seifert, U.: First and Second Law of Thermodynamics at Strong Coupling. Phys. Rev. Lett. 116, 020601 (2016) https://doi.org/10.1103/PhysRevLett.116.020601 Jarzynski [2017] Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  31. Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017) https://doi.org/10.1103/PhysRevX.7.011008 Kirkwood [1935] Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  32. Kirkwood, J.G.: Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935) https://doi.org/10.1063/1.1749657 Jarzynski [2004] Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  33. Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theory Exp. 2004, 09005 (2004) https://doi.org/10.1088/1742-5468/2004/09/P09005 Mori and Miyashita [2008] Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  34. Mori, T., Miyashita, S.: Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J. Phys. Soc. Japan 77, 124005 (2008) https://doi.org/10.1143/JPSJ.77.124005 Cresser and Anders [2021] Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601 Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601
  35. Cresser, J.D., Anders, J.: Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Phys. Rev. Lett. 127, 250601 (2021) https://doi.org/10.1103/PhysRevLett.127.250601

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: