Smart Pilot Assignment for IoT in Massive MIMO Systems: A Path Towards Scalable IoT Infrastructure (2404.10188v1)
Abstract: 5G sets the foundation for an era of creativity with its faster speeds, increased data throughput, reduced latency, and enhanced IoT connectivity, all enabled by Massive MIMO (M-MIMO) technology. M-MIMO boosts network efficiency and enhances user experience by employing intelligent user scheduling. This paper presents a user scheduling scheme and pilot assignment strategy designed for IoT devices, emphasizing mitigating pilot contamination, a key obstacle to improving spectral efficiency (SE) and system scalability in M-MIMO networks. We utilize a user clustering-based pilot allocation scheme to boost IoT device scalability in M-MIMO systems. Additionally, our smart pilot allocation minimizes interference and enhances SE by treating pilot assignment as a graph coloring problem, optimizing it through integer linear programming (ILP). Recognizing the computational complexity of ILP, we introduced a binary search-based heuristic predicated on interference threshold to expedite the computation, while maintaining a near-optimal solution. The simulation results show a significant decrease in the required pilot overhead (about 17%), and substantial enhancement in SE (about 8-14%).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.