PD-L1 Classification of Weakly-Labeled Whole Slide Images of Breast Cancer
Abstract: Specific and effective breast cancer therapy relies on the accurate quantification of PD-L1 positivity in tumors, which appears in the form of brown stainings in high resolution whole slide images (WSIs). However, the retrieval and extensive labeling of PD-L1 stained WSIs is a time-consuming and challenging task for pathologists, resulting in low reproducibility, especially for borderline images. This study aims to develop and compare models able to classify PD-L1 positivity of breast cancer samples based on WSI analysis, relying only on WSI-level labels. The task consists of two phases: identifying regions of interest (ROI) and classifying tumors as PD-L1 positive or negative. For the latter, two model categories were developed, with different feature extraction methodologies. The first encodes images based on the colour distance from a base color. The second uses a convolutional autoencoder to obtain embeddings of WSI tiles, and aggregates them into a WSI-level embedding. For both model types, features are fed into downstream ML classifiers. Two datasets from different clinical centers were used in two different training configurations: (1) training on one dataset and testing on the other; (2) combining the datasets. We also tested the performance with or without human preprocessing to remove brown artefacts Colour distance based models achieve the best performances on testing configuration (1) with artefact removal, while autoencoder-based models are superior in the remaining cases, which are prone to greater data variability.
- VENTANA PD-L1 (SP142) Assay, Interpretation Guide for Triple-Negative Breast Carcinoma (TNBC) (2019) Pantanowitz et al. [2015] Pantanowitz, L., Farahani, N., Parwani, A.: Whole slide imaging in pathology: Advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine International, 23 (2015) https://doi.org/10.2147/plmi.s59826 Aeffner et al. [2019] Aeffner, F., Zarella, M.D., al., N.B.: Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. Journal of Pathology Informatics 10(1), 9 (2019) https://doi.org/10.4103/jpi.jpi_82_18 Dimitriou et al. [2019] Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Pantanowitz, L., Farahani, N., Parwani, A.: Whole slide imaging in pathology: Advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine International, 23 (2015) https://doi.org/10.2147/plmi.s59826 Aeffner et al. [2019] Aeffner, F., Zarella, M.D., al., N.B.: Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. Journal of Pathology Informatics 10(1), 9 (2019) https://doi.org/10.4103/jpi.jpi_82_18 Dimitriou et al. [2019] Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Aeffner, F., Zarella, M.D., al., N.B.: Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. Journal of Pathology Informatics 10(1), 9 (2019) https://doi.org/10.4103/jpi.jpi_82_18 Dimitriou et al. [2019] Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Pantanowitz, L., Farahani, N., Parwani, A.: Whole slide imaging in pathology: Advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine International, 23 (2015) https://doi.org/10.2147/plmi.s59826 Aeffner et al. [2019] Aeffner, F., Zarella, M.D., al., N.B.: Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. Journal of Pathology Informatics 10(1), 9 (2019) https://doi.org/10.4103/jpi.jpi_82_18 Dimitriou et al. [2019] Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Aeffner, F., Zarella, M.D., al., N.B.: Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. Journal of Pathology Informatics 10(1), 9 (2019) https://doi.org/10.4103/jpi.jpi_82_18 Dimitriou et al. [2019] Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Aeffner, F., Zarella, M.D., al., N.B.: Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. Journal of Pathology Informatics 10(1), 9 (2019) https://doi.org/10.4103/jpi.jpi_82_18 Dimitriou et al. [2019] Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Dimitriou, N., Aandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: An overview. Frontiers in Medicine 6 (2019) https://doi.org/10.3389/fmed.2019.00264 O’Shea and Nash [2015] O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- O’Shea, K., Nash, R.: An Introduction to Convolutional Neural Networks (2015) Wu et al. [2020] Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Wu, J., Liu, C., al., X.L.: Deep learning approach for automated cancer detection and tumor proportion score estimation of pd-l1 expression in lung adenocarcinoma (2020) https://doi.org/10.1101/2020.05.31.126797 Wu et al. [2022] Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Wu, J., Liu, C., Liu, X., Sun, W., Li, L., Gao, N., Zhang, Y., Yang, X., Zhang, J., Wang, H., Liu, X., Huang, X., Zhang, Y., Cheng, R., Chi, K., Mao, L., Zhou, L., Lin, D., Ling, S.: Artificial intelligence-assisted system for precision diagnosis of pd-l1 expression in non-small cell lung cancer. Modern Pathology 35(3), 403–411 (2022) https://doi.org/10.1038/s41379-021-00904-9 Huang et al. [2022] Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Huang, Z., Chen, L., Lv, L., Fu, C.-C., Jin, Y., Zheng, Q., Wang, B., Ye, Q., Fang, Q., Li, Y.: A new ai-assisted scoring system for pd-l1 expression in nsclc. Computer Methods and Programs in Biomedicine 221, 106829 (2022) https://doi.org/10.1016/j.cmpb.2022.106829 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015) Wang et al. [2021] Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Wang, X., Wang, L., Bu, H.e.a.: How can artificial intelligence models assist pd-l1 expression scoring in breast cancer: results of multi-institutional ring studies. npj Breast Cancer 7(1), 61 (2021) https://doi.org/10.1038/s41523-021-00268-y Chaurasia and Culurciello [2017] Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, ??? (2017). https://doi.org/10.1109/vcip.2017.8305148 . http://dx.doi.org/10.1109/VCIP.2017.8305148 Kapil et al. [2018] Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Kapil, A., Meier, A., Zuraw, A., Steele, K.E., Rebelatto, M.C., Schmidt, G., Brieu, N.: Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies. Springer (2018). https://doi.org/10.1038/s41598-018-35501-5 . http://dx.doi.org/10.1038/s41598-018-35501-5 Odena et al. [2017] Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs (2017) Baldevbhai and Anand [2012] Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Baldevbhai, P.J., Anand, R.S.: Color image segmentation for medical images using l*a*b* color space. IOSR Journal of Electronics and Communication Engineering 1(2), 24–45 (2012) https://doi.org/10.9790/2834-0122445 Mandic et al. [2006] Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Mandic, L., Grgic, S., Grgic, M.: Comparison of color difference equations. In: Proceedings ELMAR 2006, pp. 107–110 (2006). https://doi.org/10.1109/ELMAR.2006.329526 . https://ieeexplore.ieee.org/document/4127499 Mat Said et al. [2016] Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Mat Said, K.A., Jambek, A., Sulaiman, N.: A study of image processing using morphological opening and closing processes. International Journal of Control Theory and Applications 9, 15–21 (2016) Masci and et al. [2011] Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Masci, J., al.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial Neural Networks and Machine Learning – ICANN 2011, pp. 52–59. Springer, Berlin, Heidelberg (2011) Tellez et al. [2018] Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Tellez, D., Laak, J., Ciompi, F.: Gigapixel whole-slide image classification using unsupervised image compression and contrastive training (2018) Bankhead et al. [2017] Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5 Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
- Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Gray, R.T., Murray, L.J., Coleman, H.G., James, J.A., Salto-Tellez, M., Hamilton, P.W.: Qupath: Open source software for digital pathology image analysis. Scientific Reports 7(1), 16878 (2017) https://doi.org/10.1038/s41598-017-17204-5
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.