Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A strongly interacting, two-dimensional, dipolar spin ensemble in (111)-oriented diamond (2404.10075v1)

Published 15 Apr 2024 in quant-ph and cond-mat.mtrl-sci

Abstract: Systems of spins with strong dipolar interactions and controlled dimensionality enable new explorations in quantum sensing and simulation. In this work, we investigate the creation of strong dipolar interactions in a two-dimensional ensemble of nitrogen-vacancy (NV) centers generated via plasma-enhanced chemical vapor deposition (PECVD) on (111)-oriented diamond substrates. We find that diamond growth on the (111) plane yields high incorporation of spins, both nitrogen and NV centers, where the density of the latter is tunable via the miscut of the diamond substrate. Our process allows us to form dense, preferentially aligned, 2D NV ensembles with volume-normalized AC sensitivity down to $\eta_{AC}$ = 810 pT um${3/2}$ Hz${-1/2}$. Furthermore, we show that (111) affords maximally positive dipolar interactions amongst a 2D NV ensemble, which is crucial for leveraging dipolar-driven entanglement schemes and exploring new interacting spin physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. Cao, G.Z., Schermer, J.J., Enckevort, W.J.P., Elst, L.J. W.A.L.M. abd Giling: Growth of 100 textured diamond films by the addition of nitrogen. J. Appl. Phys. 79, 1357–1364 (1996) https://doi.org/10.1063/1.361033 Tallaire et al. [2015] Tallaire, A., Lesik, M., Jacques, V., Pezzagna, S., Mille, V., Brinza, O., Meijer, J., Abel, B., Roch, J.F., Gicquel, A., J.Achard: Temperature dependent creation of nitrogen-vacancy centers in single crystal cvd diamond layers. Diam. Rel. Mater. 51, 55–60 (2015) Kato et al. [2007] Kato, H., Makino, T., Yamasaki, S., Okushi, H.: N-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D. Appl. Phys. 40(20), 6189–6200 (2007) https://doi.org/10.1088/0022-3727/40/20/S05 Ozawa et al. [2017] Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Tallaire, A., Lesik, M., Jacques, V., Pezzagna, S., Mille, V., Brinza, O., Meijer, J., Abel, B., Roch, J.F., Gicquel, A., J.Achard: Temperature dependent creation of nitrogen-vacancy centers in single crystal cvd diamond layers. Diam. Rel. Mater. 51, 55–60 (2015) Kato et al. [2007] Kato, H., Makino, T., Yamasaki, S., Okushi, H.: N-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D. Appl. Phys. 40(20), 6189–6200 (2007) https://doi.org/10.1088/0022-3727/40/20/S05 Ozawa et al. [2017] Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Kato, H., Makino, T., Yamasaki, S., Okushi, H.: N-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D. Appl. Phys. 40(20), 6189–6200 (2007) https://doi.org/10.1088/0022-3727/40/20/S05 Ozawa et al. [2017] Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  2. Tallaire, A., Lesik, M., Jacques, V., Pezzagna, S., Mille, V., Brinza, O., Meijer, J., Abel, B., Roch, J.F., Gicquel, A., J.Achard: Temperature dependent creation of nitrogen-vacancy centers in single crystal cvd diamond layers. Diam. Rel. Mater. 51, 55–60 (2015) Kato et al. [2007] Kato, H., Makino, T., Yamasaki, S., Okushi, H.: N-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D. Appl. Phys. 40(20), 6189–6200 (2007) https://doi.org/10.1088/0022-3727/40/20/S05 Ozawa et al. [2017] Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Kato, H., Makino, T., Yamasaki, S., Okushi, H.: N-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D. Appl. Phys. 40(20), 6189–6200 (2007) https://doi.org/10.1088/0022-3727/40/20/S05 Ozawa et al. [2017] Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  3. Kato, H., Makino, T., Yamasaki, S., Okushi, H.: N-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D. Appl. Phys. 40(20), 6189–6200 (2007) https://doi.org/10.1088/0022-3727/40/20/S05 Ozawa et al. [2017] Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  4. Ozawa, H., Tahara, K., Ishiwata, H., Hatano, M., Iwasaki, T.: Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl. Phys. Exp. 10(4), 045501 (2017) https://doi.org/10.7567/APEX.10.045501 Meynell et al. [2020] Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  5. Meynell, S., McLellan, C., Hughes, L.B., Wang, W., Mates, T.E., Mukherjee, K., Jayich, A.C.B.: Engineering quantum-coherent defects: the role of substrate miscut in chemical vapor deposition diamond growth. Appl. Phys. Lett. 117, 194001 (2020) Davis et al. [2023] Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  6. Davis, E.J., Ye, B., Machado, F., Meynell, S.A., Wu, W., Mittiga, T., Schenken, W., Joos, M., Kobrin, B., Lyu, Y., Wang, Z., Bluvstein, D., Choi, S., Zu, C., B., J.A.C., Yao, N.Y.: Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023) https://doi.org/10.1038/s41567-023-01944-5 Hughes et al. [2023] Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  7. Hughes, L.B., Zhang, Z., Jin, C., Meynell, S.A., Ye, B., Wu, W., Wang, Z., Davis, E.J., Mates, T.E., Yao, N.Y., Mukherjee, K., Bleszynski Jayich, A.C.: Two-dimensional spin systems in pecvd-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation. APL Mater. 11(2) (2023) https://doi.org/10.1063/5.0133501 Barry et al. [2020] Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  8. Barry, J.F., Schloss, J.M., Bauch, E., Turner, M.J., Hart, C.A., Pham, L.M., Walsworth, R.L.: Sensitivity optimization for nv-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/RevModPhys.92.015004 Zhou et al. [2020] Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  9. Zhou, H., Choi, J., Choi, S., Landig, R., Douglas, A.M., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Cappellaro, P., Knowles, H.S., Park, H., Lukin, M.D.: Quantum metrology with strongly interacting spin systems. Phys. Rev. X. 10, 031003 (2020) https://doi.org/10.1103/PhysRevX.10.031003 [11] Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  10. Wu, W.: XY8-ODMR Theory. in preparation. Dréau et al. [2011] Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204 Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
  11. Dréau, A., Lesik, M., Rondin, L., Spinicelli, P., Arcizet, O., Roch, J.-F., Jacques, V.: Avoiding power broadening in optically detected magnetic resonance of single nv defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011) https://doi.org/10.1103/PhysRevB.84.195204
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube