Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Enhanced Low-Complexity Receiver Design for Short Block Transmission Systems (2404.10065v2)

Published 15 Apr 2024 in cs.IT, cs.ET, and math.IT

Abstract: This paper presents a comprehensive analysis and performance enhancement of short block length channel detection incorporating training information. The current communication systems' short block length channel detection typically consists of least squares channel estimation followed by quasi-coherent detection. By investigating the receiver structure, specifically the estimator-correlator, we show that the non-coherent term, often disregarded in conventional detection metrics, results in significant losses in performance and sensitivity in typical operating regimes of 5G and 6G systems. A comparison with the fully non-coherent receiver in multi-antenna configurations reveals substantial losses in low spectral efficiency operating areas. Additionally, we demonstrate that by employing an adaptive DMRS-data power adjustment, it is possible to reduce the performance loss gap, which is amenable to a more sensitive quasi-coherent receiver. However, both of the aforementioned ML detection strategies can result in substantial computational complexity when processing long bit-length codes. We propose an approach to tackle this challenge by introducing the principle of block or segment coding using First-Order RM Codes, which is amenable to low-cost decoding through block-based fast Hadamard transforms. The Block-based FHT has demonstrated to be cost-efficient with regards to decoding time, as it evolves from quadric to quasi-linear complexity with a manageable decline in performance. Additionally, by incorporating an adaptive DMRS-data power adjustment technique, we are able to bridge/reduce the performance gap with respect to the conventional maximum likelihood receiver and attain high sensitivity, leading to a good trade-off between performance and complexity to efficiently handle small payloads.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: