Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Thermodynamics of autonomous optical Bloch equations (2404.09648v4)

Published 15 Apr 2024 in quant-ph

Abstract: Optical Bloch Equations (OBEs) are canonical equations describing the dynamics of a classically driven atom coupled to a thermal bath. Their thermodynamics is highly relevant to establish fundamental energetic bounds of key quantum processes. A consistent framework is available in the regime where the drives and baths can be treated classically, i.e. remains insensitive to the coupling with the atom. This regime, however, is not adapted to explore minimal energy costs, nor to measure atom-induced energy variations inside drives and baths -- a key ability to directly measure and optimize work and heat exchanges. This calls for a new framework accounting for atomic back-actions on drives and baths. Here we build such a framework by describing the atom, the drive and the bath as a joint autonomous system, the drive and the bath being parts of the same electromagnetic field. Our approach captures atom-field correlations at fundamental timescales, as well as the atomic back-action on the field, allowing us to define work-like (heat-like) flows as energy flows stemming from effective unitary dynamics induced by one system on the other (non-unitary correlating dynamics). Time-integrated work-like and heat-like flows are directly measurable in the field, as changes of the mean field and fluctuations, respectively. Our approach differs from standard analyses by identifying an additional unitary contribution in the atom's dynamics, the self-drive, and its energetic counterpart, the self-work, yielding a tighter expression of the second law. We relate this tightening to the extra knowledge about the field state, as well as the potential of the interacted driving field to be recycled. Our autonomous framework deepens the current understanding of thermodynamics in the quantum regime and its potential for energy management at quantum scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. C. C. Tannoudji, G. Grynberg,  and J. Dupont-Roe, “Atom-photon interactions,”  (1992).
  2. J. Stevens, D. Szombati, M. Maffei, C. Elouard, R. Assouly, N. Cottet, R. Dassonneville, Q. Ficheux, S. Zeppetzauer, A. Bienfait, et al., “Energetics of a single qubit gate,” Phys. Rev. Lett. 129, 110601 (2022).
  3. R. Kosloff, “Quantum thermodynamics and open-systems modeling,” J. Chem. Phys. 150, 204105 (2019).
  4. H.-P. Breuer, F. Petruccione, et al., “The theory of open quantum systems,”  (2002).
  5. Robert Alicki, “The quantum open system as a model of the heat engine,” J. Phys. A Math. Gen. 12, L103 (1979).
  6. Roie Dann, Amikam Levy,  and Ronnie Kosloff, “Time-dependent Markovian quantum master equation,” Phys. Rev. A 98, 052129 (2018).
  7. K. Szczygielski, D. Gelbwaser-Klimovsky,  and R. Alicki, “Markovian master equation and thermodynamics of a two-level system in a strong laser field,” Phys. Rev. E 87, 012120 (2013).
  8. C. Elouard, D. Herrera-Martí, M. Esposito,  and A. Auffèves, “Thermodynamics of optical bloch equations,” New J. Phys. 22, 103039 (2020).
  9. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
  10. U. Dorner and P. Zoller, “Laser-driven atoms in half-cavities,” Phys. Rev. A 66, 023816 (2002).
  11. J. T. Shen and S. Fan, “Coherent Single Photon Transport in a One-Dimensional Waveguide Coupled with Superconducting Quantum Bits,” Phys. Rev. Lett. 95, 213001 (2005).
  12. S. Fan, Ş. E. Kocabaş,  and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phy. Rev. A 82, 063821 (2010), publisher: American Physical Society.
  13. T. Tufarelli, F. Ciccarello,  and M. S. Kim, “Dynamics of spontaneous emission in a single-end photonic waveguide,” Phys. Rev. A 87, 013820 (2013).
  14. K. Kojima, H. F. Hofmann, S. Takeuchi,  and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A 70, 013810 (2004).
  15. K. A. Fischer, R. Trivedi, V. Ramasesh, I. Siddiqi,  and J. Vučković, “Scattering into one-dimensional waveguides from a coherently-driven quantum-optical system,” Quantum 2, 69 (2018).
  16. A. H. Kiilerich and K. Mølmer, “Input-output theory with quantum pulses,” Phys.Rev.Lett. 123, 123604 (2019a).
  17. V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin,  and V. Bužek, “Thermalizing quantum machines: Dissipation and entanglement,” Phys. Rev. Lett. 88, 097905 (2002).
  18. V. Giovannetti and G. M. Palma, “Master equations for correlated quantum channels,” Phys. Rev. Lett. 108, 040401 (2012a).
  19. V. Giovannetti and G. M. Palma, “Master equation for cascade quantum channels: a collisional approach,” J. Phys. B - At. Mol. Opt. 45, 154003 (2012b).
  20. Francesco Ciccarello, Salvatore Lorenzo, Vittorio Giovannetti,  and G Massimo Palma, “Quantum collision models: Open system dynamics from repeated interactions,” Phys. Rep. 954, 1–70 (2022).
  21. F. Ciccarello, “Collision models in quantum optics,” Quantum Meas. Quantum Metrol. 4, 53–63 (2017).
  22. M. Maffei, P. A. Camati,  and A. Auffèves, “Closed-system solution of the 1d atom from collision model,” Entropy 24 (2022), 10.3390/e24020151.
  23. M. Maffei, P. A. Camati,  and A. Auffèves, “Probing nonclassical light fields with energetic witnesses in waveguide quantum electrodynamics,” Phys. Rev. Res. 3, L032073 (2021).
  24. H. Weimer, M. J. Henrich, F. Rempp, H. Schröder,  and G. Mahler, “Local effective dynamics of quantum systems: A generalized approach to work and heat,” EPL 83, 30008 (2008).
  25. H. Hossein-Nejad, E. J. O’Reilly,  and A. Olaya-Castro, “Work, heat and entropy production in bipartite quantum systems,” New J. Phys. 17, 075014 (2015).
  26. J. Combes, J. Kerckhoff,  and M. Sarovar, “The SLH framework for modeling quantum input-output networks,” Adv. Phys.: X 2, 784–888 (2017).
  27. A. H. Kiilerich and K. Mølmer, “Input-output theory with quantum pulses,” Phys.Rev.Lett. 123, 123604 (2019b).
  28. D. Cilluffo, A. Carollo, S. Lorenzo, J. A. Gross, G. M. Palma,  and F. Ciccarello, “Collisional picture of quantum optics with giant emitters,” Phys. Rev. Res. 2, 043070 (2020).
  29. C. Gardiner and P. Zoller, “Quantum noise: a handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics,”  (2004).
  30. W. Magnus, “On the exponential solution of differential equations for a linear operator,” Commun. pure appl. math. 7, 649–673 (1954).
  31. S. Blanes, F. Casas, J. A. Oteo,  and J. Ros, “A pedagogical approach to the magnus expansion,” Eur. J. Phys. 31, 907 (2010).
  32. F. L. S. Rodrigues, G. De Chiara, M. Paternostro,  and G. T. Landi, “Thermodynamics of weakly coherent collisional models,” Phys. Rev. Lett. 123, 140601 (2019).
  33. J. Dalibard, J. Dupont-Roc,  and C. Cohen-Tannoudji, “Vacuum fluctuations and radiation reaction: identification of their respective contributions,” J. Phys. France 43, 1617 (1982).
  34. P. W. Milonni and W. A. Smith, “Radiation reaction and vacuum fluctuations in spontaneous emission,” Phys. Rev. A 11, 814 (1975).
  35. F. Binder, L. A. Correa, C. Gogolin, J. Anders,  and G. Adesso, “Thermodynamics in the quantum regime: fundamental aspects and new directions,”  (2019).
  36. R. Alicki and M. Fannes, ‘‘Entanglement boost for extractable work from ensembles of quantum batteries,” Phys. Rev. E 87, 042123 (2013).
  37. M. Esposito, K. Lindenberg,  and C. Van den Broeck, “Entropy production as correlation between system and reservoir,” New J. Phys. 12, 013013 (2010).
  38. G. T. Landi and M. Paternostro, “Irreversible entropy production: From classical to quantum,” Rev. Mod. Phys. 93, 035008 (2021).
  39. J. P. Pekola and B. Karimi, “Ultrasensitive calorimetric detection of single photons from qubit decay,” Phys. Rev. X 12, 011026 (2022).
  40. B. Karimi, F. Brange, P. Samuelsson,  and J. P. Pekola, “Reaching the ultimate energy resolution of a quantum detector,” Nat. Commun. 11, 1–6 (2020).
  41. N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon,  and B. Huard, “Observing a quantum Maxwell demon at work,” Proc. Natl. Acad. Sci. U.S.A. 114, 7561–7564 (2017).
  42. F. Vigneau, J. Monsel, J. Tabanera, K. Aggarwal, L. Bresque, F. Fedele, F. Cerisola, G. A. D. Briggs, J. Anders, J. M. R. Parrondo, A. Auffèves,  and N. Ares, “Ultrastrong coupling between electron tunneling and mechanical motion,” Phys. Rev. Res. 4, 043168 (2022).
  43. J. Monsel, M. Fellous-Asiani, B. Huard,  and A. Auffèves, “The energetic cost of work extraction,” Phys. Rev. Lett. 124, 130601 (2020).
  44. C. Elouard and C. L. Latune, “Extending the laws of thermodynamics for arbitrary autonomous quantum systems,” PRX Quantum 4, 020309 (2023).
  45. A. Colla and H.-P. Breuer, “Open-system approach to nonequilibrium quantum thermodynamics at arbitrary coupling,” Phys. Rev. A 105, 052216 (2022).
  46. V. Boettcher, R. Hartmann, K. Beyer,  and W. T. Strunz, “Dynamics of a strongly coupled quantum heat engine—Computing bath observables from the hierarchy of pure states,” J. Chem. Phys. 160 (2024), 10.1063/5.0192075.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.