Dynamical Mean Field Theory for Real Materials on a Quantum Computer (2404.09527v1)
Abstract: Quantum computers (QC) could harbor the potential to significantly advance materials simulations, particularly at the atomistic scale involving strongly correlated fermionic systems where an accurate description of quantum many-body effects scales unfavorably with size. While a full-scale treatment of condensed matter systems with currently available noisy quantum computers remains elusive, quantum embedding schemes like dynamical mean-field theory (DMFT) allow the mapping of an effective, reduced subspace Hamiltonian to available devices to improve the accuracy of ab initio calculations such as density functional theory (DFT). Here, we report on the development of a hybrid quantum-classical DFT+DMFT simulation framework which relies on a quantum impurity solver based on the Lehmann representation of the impurity Green's function. Hardware experiments with up to 14 qubits on the IBM Quantum system are conducted, using advanced error mitigation methods and a novel calibration scheme for an improved zero-noise extrapolation to effectively reduce adverse effects from inherent noise on current quantum devices. We showcase the utility of our quantum DFT+DMFT workflow by assessing the correlation effects on the electronic structure of a real material, Ca2CuO2Cl2, and by carefully benchmarking our quantum results with respect to exact reference solutions and experimental spectroscopy measurements.
- N. Marzari, A. Ferretti, and C. Wolverton, Electronic-structure methods for materials design, Nat. Mater. 20, 736 (2021), number: 6 Publisher: Nature Publishing Group.
- Q. Sun and G. K.-L. Chan, Quantum embedding theories, Acc. Chem. Res. 49, 2705 (2016), arXiv:1612.02576 [physics].
- A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45, 6479 (1992), publisher: American Physical Society.
- J. Karp, A. Hampel, and A. J. Millis, Superconductivity and antiferromagnetism in \ceNdNiO2 and \ceCaCuO2: A cluster DMFT study, Phys. Rev. B 105, 205131 (2022).
- Y.-F. Yang and K. Held, Dynamical mean field theory for manganites, Phys. Rev. B 82, 195109 (2010), publisher: American Physical Society.
- A. Paul and T. Birol, Cation order control of correlations in double perovskite \ceSr2VNbO6, Phys. Rev. Res. 2, 033156 (2020), publisher: American Physical Society.
- Y. Lu and M. W. Haverkort, Exact diagonalization as an impurity solver in dynamical mean field theory, Eur. Phys. J. Spec. Top. 226, 2549 (2017).
- J. E. Hirsch and R. M. Fye, Monte Carlo Method for Magnetic Impurities in Metals, Phys. Rev. Lett. 56, 2521 (1986), publisher: American Physical Society.
- R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Maximum-entropy method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 41, 2380 (1990), publisher: American Physical Society.
- D. J. García, K. Hallberg, and M. J. Rozenberg, Dynamical Mean Field Theory with the Density Matrix Renormalization Group, Phys. Rev. Lett. 93, 246403 (2004), publisher: American Physical Society.
- R. Žitko and T. Pruschke, Energy resolution and discretization artifacts in the numerical renormalization group, Phys. Rev. B 79, 085106 (2009), publisher: American Physical Society.
- S. Endo, I. Kurata, and Y. O. Nakagawa, Calculation of the Green’s function on near-term quantum computers, Phys. Rev. Res. 2, 033281 (2020), publisher: American Physical Society.
- F. Jamet, A. Agarwal, and I. Rungger, Quantum subspace expansion algorithm for Green’s functions (2022), arXiv:2205.00094 [quant-ph].
- K. Kuroiwa and Y. O. Nakagawa, Penalty methods for a variational quantum eigensolver, Phys. Rev. Res. 3, 013197 (2021).
- O. Higgott, D. Wang, and S. Brierley, Variational Quantum Computation of Excited States, Quantum 3, 156 (2019).
- K. M. Nakanishi, K. Mitarai, and K. Fujii, Subspace-search variational quantum eigensolver for excited states, Phys. Rev. Res. 1, 033062 (2019).
- B. Grande and H. Müller-Buschbaum, Über Oxocuprate. XVII. Zur Kenntnis von \ceCa2CuO2Cl2 und \ceCa2CuO2Br2, Zeitschrift für anorganische und allgemeine Chemie 429, 88 (1977).
- F. Zhang and T. Rice, Effective Hamiltonian for the superconducting Cu oxides, Physical Review B 37, 3759 (1988).
- P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott insulator: Physics of high-temperature superconductivity, Reviews of modern physics 78, 17 (2006).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
- P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot, Z. Physik 47, 631 (1928).
- J. F. Stanton and G. Jürgen, Analytic energy derivatives for ionized states described by the equation‐of‐motion coupled cluster method, J. Chem. Phys. 101, 8938–8944 (1994).
- M. Nooijen and R. J. Bartlett, Equation of motion coupled cluster method for electron attachment, J. Chem. Phys. 102, 3629–3647 (1995).
- J. F. Stanton and G. Jürgen, Perturbative treatment of the similarity transformed hamiltonian in equation‐of‐motion coupled‐cluster approximations, J. Chem. Phys. 103, 1064–1076 (1995).
- E. van den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Phys. Rev. A 105, 032620 (2022).
- Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
- A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75, 473 (2003).
- L.-F. m. c. Arsenault, P. Sémon, and A.-M. S. Tremblay, Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling, Phys. Rev. B 86, 085133 (2012).
- A. Y. Kitaev, Quantum measurements and the Abelian Stabilizer Problem (1995), arXiv:quant-ph/9511026.
- H. Nishi, T. Kosugi, and Y.-i. Matsushita, Implementation of quantum imaginary-time evolution method on NISQ devices by introducing nonlocal approximation, npj Quantum Information 7, 1 (2021).
- C. L. Cortes and S. K. Gray, Quantum Krylov subspace algorithms for ground- and excited-state energy estimation, Phys. Rev. A 105, 022417 (2022), publisher: American Physical Society.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.