Papers
Topics
Authors
Recent
2000 character limit reached

Opportunistic Information-Bottleneck for Goal-oriented Feature Extraction and Communication (2404.09218v2)

Published 14 Apr 2024 in eess.SP

Abstract: The Information Bottleneck (IB) method is an information theoretical framework to design a parsimonious and tunable feature-extraction mechanism, such that the extracted features are maximally relevant to a specific learning or inference task. Despite its theoretical value, the IB is based on a functional optimization problem that admits a closed form solution only on specific cases (e.g., Gaussian distributions), making it difficult to be applied in most applications, where it is necessary to resort to complex and approximated variational implementations. To overcome this limitation, we propose an approach to adapt the closed-form solution of the Gaussian IB to a general task. Whichever is the inference task to be performed by a (possibly deep) neural-network, the key idea is to opportunistically design a regression sub-task, embedded in the original problem, where we can safely assume a (joint) multivariate normality between the sub-task's inputs and outputs. In this way we can exploit a fixed and pre-trained neural network to process the input data, using a tunable number of features, to trade data-size and complexity for accuracy. This approach is particularly useful every time a device needs to transmit data (or features) to a server that has to fulfil an inference task, as it provides a principled way to extract the most relevant features for the task to be executed, while looking for the best trade-off between the size of the feature vector to be transmitted, inference accuracy, and complexity. Extensive simulation results testify the effectiveness of the proposed method and encourage to further investigate this research line.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative adversarial networks: An overview,” IEEE signal processing magazine, vol. 35, no. 1, pp. 53–65, 2018.
  2. K. R. Chowdhary, “Natural language processing,” in Fundamentals of Artificial Intelligence.   Springer India, 2020, pp. 603–649.
  3. C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in Proceedings of the 26th International Conference on Neural Information Processing Systems.   Red Hook, NY, USA: Curran Associates Inc., 2013, p. 2553–2561.
  4. Z. Li, S. Wang, S. Zhang, M. Wen, K. Ye, Y.-C. Wu, and D. W. K. Ng, “Edge-assisted v2x motion planning and power control under channel uncertainty,” IEEE Transactions on Vehicular Technology, vol. 72, no. 7, pp. 9641–9646, 2023.
  5. E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, “6g: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 42–50, 2019.
  6. H. Kurunathan, H. Huang, K. Li, W. Ni, and E. Hossain, “Machine learning-aided operations and communications of unmanned aerial vehicles: A contemporary survey,” IEEE Communications Surveys & Tutorials, 2023.
  7. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.
  8. E. Calvanese Strinati and S. Barbarossa, “6G networks: Beyond shannon towards semantic and goal-oriented communications,” Computer Networks, vol. 190, May 2021, Art. no. 107930.
  9. M. ITU-R, “Imt traffic estimates for the years 2020 to 2030,” M. 2370-0, 2015.
  10. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  11. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” in Proc. of the 37-th Annual Allerton Conference on Communication, Control and Computing, 1999, pp. 368–377.
  12. G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, “Information bottleneck for gaussian variables,” J. Mach. Learn. Res., vol. 6, p. 165–188, dec 2005.
  13. F. Pezone, S. Barbarossa, and P. Di Lorenzo, “Goal-oriented communication for edge learning based on the information bottleneck,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022, pp. 8832–8836.
  14. A. Zaidi, I. Estella-Aguerri, and S. Shamai, “On the information bottleneck problems: Models, connections, applications and information theoretic views,” Entropy, vol. 22, no. 2, p. 151, 2020.
  15. J. Wang, Y. Zheng, J. Ma, X. Li, C. Wang, J. Gee, H. Wang, and W. Huang, “Information bottleneck-based interpretable multitask network for breast cancer classification and segmentation,” Medical Image Analysis, vol. 83, 2023, Art. no. 102687.
  16. F. Zhang, Y. Zheng, J. Wu, X. Yang, and X. Che, “Multi-rater label fusion based on an information bottleneck for fundus image segmentation,” Biomedical Signal Processing and Control, vol. 79, 2023, Art. no. 104108.
  17. A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottleneck,” in International Conference on Learning Representations, 2017.
  18. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  19. M. M. Mahvari, M. Kobayashi, and A. Zaidi, “Scalable vector gaussian information bottleneck,” vol. 2021-July, 2021, Conference paper, p. 37 – 42, cited by: 1; All Open Access, Green Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115047762&doi=10.1109%2fISIT45174.2021.9517720&partnerID=40&md5=c59f6e2f7f56d19929a579af733d3f25
  20. I. Estella Aguerri and A. Zaidi, “Distributed information bottleneck method for discrete and gaussian sources,” in International Zurich Seminar on Information and Communication (IZS 2018). Proceedings.   ETH Zurich, 2018, pp. 35–39.
  21. A. A. Alemi, I. Fischer, and J. V. Dillon, “Uncertainty in the variational information bottleneck,” arXiv preprint arXiv:1807.00906, 2018.
  22. K. Ahuja, E. Caballero, D. Zhang, J.-C. Gagnon-Audet, Y. Bengio, I. Mitliagkas, and I. Rish, “Invariance principle meets information bottleneck for out-of-distribution generalization,” Advances in Neural Information Processing Systems, vol. 34, pp. 3438–3450, 2021.
  23. T. Wu, H. Ren, P. Li, and J. Leskovec, “Graph information bottleneck,” Advances in Neural Information Processing Systems, vol. 33, pp. 20 437–20 448, 2020.
  24. J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He, “Graph information bottleneck for subgraph recognition,” in International Conference on Learning Representations, 2021.
  25. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 197–211, 2021.
  26. ——, “Task-oriented communication for multidevice cooperative edge inference,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 73–87, 2023.
  27. L. D. Chamain, S. Qi, and Z. Ding, “End-to-end image classification and compression with variational autoencoders,” IEEE Internet of Things Journal, vol. 9, no. 21, pp. 21 916–21 931, 2022.
  28. F. Liu, W. Tong, Z. Sun, and C. Guo, “Task-oriented semantic communication systems based on extended rate-distortion theory,” arXiv preprint arXiv:2201.10929, 2022.
  29. O. Alhussein, M. Wei, and A. Akhavain, “Dynamic encoding and decoding of information for split learning in mobile-edge computing: Leveraging information bottleneck theory,” arXiv preprint arXiv:2309.02787, 2023.
  30. H. Li, W. Yu, H. He, J. Shao, S. Song, J. Zhang, and K. B. Letaief, “Task-oriented communication with out-of-distribution detection: An information bottleneck framework,” arXiv preprint arXiv:2305.12423, 2023.
  31. S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2577–2591, 2023.
  32. M. Zhu, C. Feng, C. Guo, N. Jiang, and O. Simeone, “Information bottleneck-inspired type based multiple access for remote estimation in iot systems,” IEEE Signal Processing Letters, vol. 30, pp. 403–407, 2023.
  33. F. Binucci, P. Banelli, P. Di Lorenzo, and S. Barbarossa, “Adaptive resource optimization for edge inference with goal-oriented communications,” EURASIP Jour. on Advan. in Sig. Proc., vol. 2022, no. 1, 2022, Art. no. 123.
  34. ——, “Dynamic resource allocation for multi-user goal-oriented communications at the wireless edge,” in Proceedings of the 30th European Sig. Proc. Conf. (EUSIPCO), Belgrade, Serbia, 2022, pp. 697–701.
  35. Wen, Dingzhu and Liu, Peixi and Zhu, Guangxu and Shi, Yuanming and Xu, Jie and Eldar, Yonina C. and Cui, Shuguang, “Task-oriented sensing, computation, and communication integration for multi-device edge ai,” IEEE Transactions on Wireless Communications, vol. 23, no. 3, pp. 2486–2502, 2024.
  36. F. Binucci, P. Banelli, P. D. Lorenzo, and S. Barbarossa, “Multi-user goal-oriented communications with energy-efficient edge resource management,” IEEE Transactions on Green Communications and Networking, vol. 7, no. 4, pp. 1709–1724, 2023.
  37. J. M. Leiva-Murillo and A. Artés-Rodríguez, “Maximization of mutual information for supervised linear feature extraction,” IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1433–1441, 2007.
  38. H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459, 2010.
  39. Y. Ugur, I. E. Aguerri, and A. Zaidi, “A generalization of blahut-arimoto algorithm to compute rate-distortion regions of multiterminal source coding under logarithmic loss,” vol. 2018-January, 2017, Conference paper, p. 349 – 353, cited by: 8; All Open Access, Green Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046335084&doi=10.1109%2fITW.2017.8277967&partnerID=40&md5=7eeab0f112bbbcf9bf8db7c66f2bbc0a
  40. D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis: An overview with application to learning methods,” Neural computation, vol. 16, no. 12, pp. 2639–2664, 2004.
  41. S. Bandyopadhyay and S. N. Lahiri, “Asymptotic properties of discrete fourier transforms for spatial data,” Sankhyā: The Indian Journal of Statistics, Series A (2008-), pp. 221–259, 2009.
  42. J. S. Lim, “Two-dimensional signal and image processing,” Englewood Cliffs, 1990.
  43. H. D. Vinod, “Canonical ridge and econometrics of joint production,” Journal of econometrics, vol. 4, no. 2, pp. 147–166, 1976.
  44. K. G. Larkin, “Reflections on shannon information: In search of a natural information-entropy for images,” arXiv preprint arXiv:1609.01117, 2016.
  45. J. Stallkamp et al., “The german traffic sign recognition benchmark: a multi-class classification competition,” in The 2011 international joint conference on neural networks.   IEEE, 2011, pp. 1453–1460.
  46. Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian, “Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019.
  47. L. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.
  48. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Prof. of the Int. Conf. on Learning Representations (ICLR), San Diego, CA, USA, 2015.
  49. N. Henze and B. Zirkler, “A class of invariant consistent tests for multivariate normality,” Communications in statistics-Theory and Methods, vol. 19, no. 10, pp. 3595–3617, 1990.
  50. N. Chumerin and M. M. Van Hulle, “Comparison of two feature extraction methods based on maximization of mutual information,” in Proc. of the 16th IEEE Workshop on Machine Learning for Signal Processing (MLSP), Maynooth, Ireland, 2006, pp. 343–348.
  51. M. Merluzzi, P. Di Lorenzo, and S. Barbarossa, “Wireless edge machine learning: Resource allocation and trade-offs,” IEEE Access, vol. 9, pp. 45 377–45 398, 2021.
  52. Dan Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” in International Conference on Learning Representations, 2018. [Online]. Available: https://openreview.net/forum?id=HJz6tiCqYm

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.