Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

InverseVis: Revealing the Hidden with Curved Sphere Tracing (2404.09092v2)

Published 13 Apr 2024 in cs.GR

Abstract: Exploratory analysis of scalar fields on surface meshes presents significant challenges in identifying and visualizing important regions, particularly on the surface's backside. Previous visualization methods achieved only a limited visibility of significant features, i.e., regions with high or low scalar values, during interactive exploration. In response to this, we propose a novel technique, InverseVis, which leverages curved sphere tracing and uses the otherwise unused space to enhance visibility. Our approach combines direct and indirect rendering, allowing camera rays to wrap around the surface and reveal information from the backside. To achieve this, we formulate an energy term that guides the image synthesis in previously unused space, highlighting the most important regions of the backside. By quantifying the amount of visible important features, we optimize the camera position to maximize the visibility of the scalar field on both the front and backsides. InverseVis is benchmarked against state-of-the-art methods and a derived technique, showcasing its effectiveness in revealing essential features and outperforming existing approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Antiga L., Steinman D. A.: Automated Parameterization and Patching of Bifurcating Vessels. Tech. rep., EPFL Infoscience, 2003.
  2. Antiga L., Steinman D. A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Transactions on Medical Imaging 23, 6 (2004), 704–713. doi:10.1109/tmi.2004.826946.
  3. The virtual mirror: A new interaction paradigm for augmented reality environments. IEEE Transactions on Medical Imaging 28, 9 (2009), 1498–1510.
  4. Laparoscopic virtual mirror for understanding vessel structure evaluation study by twelve surgeons. In Proc. of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (2007), IEEE, pp. 125–128.
  5. The tangible virtual mirror: New visualization paradigm for navigated surgery. In Proc. of Augmented Reality Environments for Medical Imaging and Computer-Aided Surgery (2006).
  6. Conformal mapping of carotid vessel wall and plaque thickness measured from 3D ultrasound images. Medical & Biological Engineering & Computing 55, 12 (2017), 2183–2195. doi:10.1007/s11517-017-1656-4.
  7. Area-preserving mapping of 3D carotid ultrasound images using density-equalizing reference map. IEEE Transactions on Biomedical Engineering 67, 9 (2020), 2507–2517. doi:10.1109/tbme.2019.2963783.
  8. Temporal views of flattened mitral valve geometries. IEEE Transactions on Visualization and Computer Graphics 26, 1 (2019), 971–980. doi:10.1109/TVCG.2019.2934337.
  9. Visualizing carotid blood flow simulations for stroke prevention. In Computer Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 435–446.
  10. Vessel maps: A survey of map-like visualizations of the cardiovascular system. Computer Graphics Forum 41, 3 (2022), 645–673. doi:10.1111/cgf.14576.
  11. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. Journal of the Royal Society Interface 9, 69 (2012), 677–688. doi:10.1098/rsif.2011.0490.
  12. New software assistants for cardiovascular diagnosis. In Proc. of INFORMATIK 2006 – Informatik für Menschen, Band 1 (2006), Gesellschaft für Informatik e.V., pp. 491–498.
  13. Kiefer J.: Sequential minimax search for a maximum. Proceedings of the American Mathematical Society 4 (1953), 502–506.
  14. Surface flattening of the human left atrium and proof-of-concept clinical applications. Computerized Medical Imaging and Graphics 38, 4 (2014), 251–266. doi:10.1016/j.compmedimag.2014.01.004.
  15. A survey of flattening-based medical visualization techniques. Computer Graphics Forum 37, 3 (2018), 597–624.
  16. 2D plot visualization of aortic vortex flow in cardiac 4D PC-MRI data. In Prof. of Bildverarbeitung für die Medizin 2015 (2015), Handels H., Deserno T. M., Meinzer H.-P., Tolxdorff T., (Eds.), Springer Verlag, pp. 257–262. doi:10.1007/978-3-662-46224-9_45.
  17. Localized finite-time Lyapunov exponent for unsteady flow analysis. In Proc. of International Symposium on Vision, Modeling, and Visualization (2009), pp. 265–276.
  18. Mitral valve flattening and parameter mapping for patient-specific valve diagnosis. International Journal of Computer Assisted Radiology and Surgery (2020), 617–627. doi:10.1007/s11548-019-02114-w.
  19. Automatic viewpoint selection for exploration of time-dependent cerebral aneurysm data. In Proc. of Bildverarbeitung für die Medizin (BVM) (2017), Springer Verlag, pp. 352–357. doi:10.1007/978-3-662-54345-0_79.
  20. Visual analysis of aneurysm data using statistical graphics. IEEE Transactions on Visualization and Computer Graphics 25, 1 (2019), 997–1007. doi:10.1109/tvcg.2018.2864509.
  21. Cardiac unfold: A novel technique for image-guided cardiac catheterization procedures. In Information Processing in Computer-Assisted Interventions. Springer Berlin Heidelberg, 2012, pp. 104–114. doi:10.1007/978-3-642-30618-1_11.
  22. Combined visualization of vessel deformation and hemodynamics in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017), 761–770. doi:10.1109/tvcg.2016.2598795.
  23. Glyph-based comparative stress tensor visualization in cerebral aneurysms. In Computer Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 99–108. doi:https://doi.org/10.1111/cgf.13171.
  24. Skyscraper visualization of multiple time-dependent scalar fields on surfaces. Computers & Graphics 99 (2021), 22–42. doi:10.1016/j.cag.2021.05.005.
  25. Exploration of blood flow patterns in cerebral aneurysms during the cardiac cycle. Computers & Graphics 72 (2018), 12–25. doi:10.1016/j.cag.2018.01.012.
  26. Laparoscopic virtual mirror new interaction paradigm for monitor-based augmented reality. In Proc. of IEEE Virtual Reality (2007), pp. 43–50.
  27. Map displays for the analysis of scalar data on cerebral aneurysm surfaces. Computer Graphics Forum 28, 3 (2009), 895–902. doi:10.1111/j.1467-8659.2009.01459.x.
  28. Standard quasi-conformal flattening of the right and left atria. In Functional Imaging and Modeling of the Heart, Coudière Y., Ozenne V., Vigmond E., Zemzemi N., (Eds.). Springer International Publishing, 2019, pp. 85–93. doi:10.1007/978-3-030-21949-9_10.
  29. Amnivis–a system for qualitative exploration of near-wall hemodynamics in cerebral aneurysms. In Computer Graphics Forum (2013), vol. 32, Wiley Online Library, pp. 251–260. doi:https://doi.org/10.1111/cgf.12112.
  30. Integrated visualization of morphologic and perfusion data for the analysis of coronary artery disease. In Proc. of the Eighth Joint Eurographics / IEEE VGTC Conference on Visualization (2006), Eurographics Association, pp. 131–138.
  31. Patient independent representation of the detailed cardiac ventricular anatomy. Medical Image Analysis 35 (2017), 270–287. doi:10.1016/j.media.2016.07.006.
  32. Preim B., Meuschke M.: A survey of medical animations. Computers & Graphics 90 (2020), 145–168. doi:https://doi.org/10.1016/j.cag.2020.06.003.
  33. Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes. Medical Image Analysis 55 (2019), 65–75. doi:10.1016/j.media.2019.04.004.
  34. Viewpoint selection using viewpoint entropy. In Proc. of the Vision Modeling and Visualization Conference (2001), p. 273–280.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.