2000 character limit reached
Hidden BPS states of electroweak monopole and a new bound estimate (2404.08881v2)
Published 13 Apr 2024 in hep-ph and hep-th
Abstract: Using the BPS Lagrangian method, we obtain a distinct set of Bogomolny equations for the Cho-Maison monopoles from the bosonic sector of a regularized electroweak theory. In the limit of $n\rightarrow\infty$ of the permittivity regulator, $\epsilon\left(\rhon\right)$, the mass of the monopole can be estimated to be $M_W\sim3.56$ TeV. This value is within the latest theoretical window, 2.98 TeV - 3.75 TeV. We also discuss some possible regularization mechanisms of electroweak monopole in the Yang-Mills sector and the existence of its BPS state.
- P. A. M. Dirac, “The Theory of magnetic poles,” Phys. Rev. 74, 817-830 (1948)
- T. T. Wu and C. N. Yang, “Dirac Monopole Without Strings: Monopole Harmonics,” Nucl. Phys. B 107, 365 (1976)
- G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,” Nucl. Phys. B 79, 276-284 (1974)
- A. M. Polyakov, “Particle Spectrum in Quantum Field Theory,” JETP Lett. 20, 194-195 (1974)
- J. Preskill, “MAGNETIC MONOPOLES,” Ann. Rev. Nucl. Part. Sci. 34 (1984), 461-530
- Y. M. Shnir, “Magnetic Monopoles,” Springer, 2005, ISBN 978-3-540-25277-1, 978-3-540-29082-7
- S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19, 1264-1266 (1967)
- A. Salam, “Weak and Electromagnetic Interactions,” Conf. Proc. C 680519, 367-377 (1968)
- N. S. Manton, “Topology in the Weinberg-Salam Theory,” Phys. Rev. D 28 (1983), 2019
- Y. M. Cho and D. Maison, “Monopoles in Weinberg-Salam model,” Phys. Lett. B 391, 360-365 (1997) [arXiv:hep-th/9601028 [hep-th]]
- Y. M. Cho, K. Kimm and J. H. Yoon, “Mass of the Electroweak Monopole,” Mod. Phys. Lett. A 31 (2016) no.09, 1650053 [arXiv:1212.3885 [hep-ph]].
- Y. M. Cho, K. Kim and J. H. Yoon, “Finite Energy Electroweak Dyon,” Eur. Phys. J. C 75 no.2, 67 (2015) [arXiv:1305.1699 [hep-ph]]
- R. Gervalle and M. S. Volkov, “Electroweak monopoles and their stability,” Nucl. Phys. B 984 (2022), 115937 [arXiv:2203.16590 [hep-th]].
- C. P. Dokos and T. N. Tomaras, “Monopoles and Dyons in the SU(5) Model,” Phys. Rev. D 21 (1980), 2940
- F. A. Bais and R. J. Russell, “Magnetic Monopole Solution of Nonabelian Gauge Theory in Curved Space-Time,” Phys. Rev. D 11 (1975), 2692 [erratum: Phys. Rev. D 12 (1975), 3368]
- J. L. Pinfold [MOEDAL], “Searching for exotic particles at the LHC with dedicated detectors,” Nucl. Phys. B Proc. Suppl. 78 (1999), 52-57
- V. A. Mitsou [MoEDAL], “MoEDAL: Seeking magnetic monopoles and more at the LHC,” PoS EPS-HEP2015 (2015), 109 [arXiv:1511.01745 [physics.ins-det]].
- A. Katre [MoEDAL], “Magnetic monopole search with the MoEDAL test trapping detector,” EPJ Web Conf. 126 (2016), 04025
- J. Ellis, N. E. Mavromatos, and T. You, “The Price of an Electroweak Monopole,” Phys. Lett. B 756 (2016), 29-35 [arXiv:1602.01745 [hep-ph]].
- “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV,” ATLAS-CONF-2015-044.
- E. B. Bogomolny, “Stability of Classical Solutions,” Sov. J. Nucl. Phys. 24 (1976), 449 PRINT-76-0543 (LANDAU-INST.).
- M. K. Prasad and C. M. Sommerfield, “An Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon,” Phys. Rev. Lett. 35 (1975), 760-762
- F. Blaschke and P. Beneš, “BPS Cho–Maison monopole,” PTEP 2018 (2018) no.7, 073B03 [arXiv:1711.04842 [hep-th]].
- P. Zhang, L. P. Zou and Y. M. Cho, “Regularization of Electroweak Monopole by Charge Screening and BPS Energy Bound,” Eur. Phys. J. C 80 no.3, 280 (2020) [arXiv:2001.08866 [hep-th]]
- R. Casana, M. M. Ferreira, Jr and E. da Hora, “Generalized BPS magnetic monopoles,” Phys. Rev. D 86 (2012), 085034 [arXiv:1210.3382 [hep-th]].
- R. Casana, M. M. Ferreira, E. da Hora and C. dos Santos, “Analytical self-dual solutions in a nonstandard Yang–Mills–Higgs scenario,” Phys. Lett. B 722 (2013), 193-197 [arXiv:1304.3382 [hep-th]].
- H. S. Ramadhan, “Some exact BPS solutions for exotic vortices and monopoles,” Phys. Lett. B 758 (2016), 140-145 [arXiv:1512.01640 [hep-th]].
- N. E. Mavromatos and V. A. Mitsou, “Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos,” Int. J. Mod. Phys. A 35 (2020) no.23, 2030012 [arXiv:2005.05100 [hep-ph]].
- K. Sokalski, T. Wietecha and Z. Lisowski, “A concept of strong necessary condition in nonlinear field theory,” Acta Phys. Polon. B 32 (2001), 2771-2792
- C. Adam, L. A. Ferreira, E. da Hora, A. Wereszczynski and W. J. Zakrzewski, “Some aspects of self-duality and generalised BPS theories,” JHEP 08 (2013), 062 [arXiv:1305.7239 [hep-th]].
- A. N. Atmaja and H. S. Ramadhan, “Bogomol’nyi equations of classical solutions,” Phys. Rev. D 90, no.10, 105009 (2014) [arXiv:1406.6180 [hep-th]]
- A. N. Atmaja, “A Method for BPS Equations of Vortices,” Phys. Lett. B 768, 351-358 (2017) [arXiv:1511.01620 [hep-th]]
- A. N. Atmaja and I. Prasetyo, “BPS Equations of Monopole and Dyon in SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) Yang-Mills-Higgs Model, Nakamula-Shiraishi Models, and their Generalized Versions from the BPS Lagrangian Method,” Adv. High Energy Phys. 2018, 7376534 (2018) [arXiv:1803.06122 [hep-th]]
- M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144 (1934) no.852, 425-451
- S. Arunasalam and A. Kobakhidze, “Electroweak monopoles and the electroweak phase transition,” Eur. Phys. J. C 77 no.7, 444 (2017) [arXiv:1702.04068 [hep-ph]]
- J. Ellis, N. E. Mavromatos and T. You, “Light-by-Light Scattering Constraint on Born-Infeld Theory,” Phys. Rev. Lett. 118, no.26, 261802 (2017) [arXiv:1703.08450 [hep-ph]]
- P. De Fabritiis and J. A. Helayël-Neto, “Electroweak monopoles with a non-linearly realized weak hypercharge,” Eur. Phys. J. C 81, no.9, 788 (2021) [arXiv:2106.08743 [hep-th]]
- S. Arunasalam, D. Collison and A. Kobakhidze, “Electroweak monopoles and electroweak baryogenesis,” arXiv:1810.10696 [hep-ph]
- N. E. Grandi, E. F. Moreno and F. A. Schaposnik, “Monopoles in nonAbelian Dirac-Born-Infeld theory,” Phys. Rev. D 59 (1999), 125014 [arXiv:hep-th/9901073 [hep-th]].
- A. N. Atmaja, “Are there BPS dyons in the generalized SU(2) Yang–Mills–Higgs model?,” Eur. Phys. J. C 82 no.7, 602 (2022) [arXiv:2002.09123 [hep-th]]
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.