Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Mass Ordering Sum Rule for the Neutrino Disappearance Channels in T2K, NOvA and JUNO (2404.08733v1)

Published 12 Apr 2024 in hep-ph and hep-ex

Abstract: We revisit a method for determining the neutrino mass ordering by using precision measurements of the atmospheric $\Delta m2$'s in both electron neutrino and muon neutrino disappearance channels, proposed by the authors in 2005 (hep-ph/0503283). The mass ordering is a very important outstanding question for our understanding of the elusive neutrino and determination of the mass ordering has consequences for other neutrino experiments. The JUNO reactor experiment will start data taking this year, and the precision of the atmospheric $\Delta m2$'s from electron anti-neutrino measurements will improve by a factor of three from Daya Bay's 2.4 % to 0.8 % within a year. This measurement, when combined with the atmospheric $\Delta m2$'s measurements from T2K and NOvA for muon neutrino disappearance, will contribute substantially to the $\Delta \chi2$ between the two remaining neutrino mass orderings. In this paper we derive a mass ordering sum rule that can be used to address the possibility that JUNO's atmospheric $\Delta m2$'s measurement, when combined with other experiments in particular T2K and NOvA, can determine the neutrino mass ordering at the 3 $\sigma$ confidence level within one year of operation. For a confidence level of 5 $\sigma$ in a single experiment we will have to wait until the middle of the next decade when the DUNE experiment is operating.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003 .
  2. B. Aharmim et al. (SNO), Phys. Rev. C 88, 025501 (2013), arXiv:1109.0763 [nucl-ex] .
  3. A. Gando et al. (KamLAND), Phys. Rev. D 88, 033001 (2013), arXiv:1303.4667 [hep-ex] .
  4. A. S. Dighe and A. Y. Smirnov, Phys. Rev. D 62, 033007 (2000), arXiv:hep-ph/9907423 .
  5. H. Minakata and H. Nunokawa, Phys. Lett. B 504, 301 (2001a), arXiv:hep-ph/0010240 .
  6. H. Minakata and H. Nunokawa, JHEP 10, 001 (2001b), arXiv:hep-ph/0108085 .
  7. C. Lunardini and A. Y. Smirnov, Nucl. Phys. B 616, 307 (2001), arXiv:hep-ph/0106149 .
  8. S. T. Petcov and M. Piai, Phys. Lett. B 533, 94 (2002), arXiv:hep-ph/0112074 .
  9. C. Lunardini and A. Y. Smirnov, JCAP 06, 009 (2003), arXiv:hep-ph/0302033 .
  10. O. Mena and S. J. Parke, Phys. Rev. D 70, 093011 (2004), arXiv:hep-ph/0408070 .
  11. S. Parke, in 28th International Symposium on Lepton Photon Interactions at High Energies (WSP, Singapur, 2020) pp. 116–127, arXiv:1801.09643 [hep-ph] .
  12. M. A. Acero et al. (NOvA),  (2023), arXiv:2311.07835 [hep-ex] .
  13. K. Abe et al. (T2K), Phys. Rev. D 108, 072011 (2023a), arXiv:2305.09916 [hep-ex] .
  14. T. Wester et al. (Super-Kamiokande),   (2023), arXiv:2311.05105 [hep-ex] .
  15. M. G. Aartsen et al. (IceCube), Phys. Rev. D 91, 072004 (2015), arXiv:1410.7227 [hep-ex] .
  16. F. An et al. (JUNO), J. Phys. G 43, 030401 (2016), arXiv:1507.05613 [physics.ins-det] .
  17. A. Abusleme et al. (JUNO), Chin. Phys. C 46, 123001 (2022), arXiv:2204.13249 [hep-ex] .
  18. M. Blennow and T. Schwetz, JHEP 08, 058 (2012), [Erratum: JHEP 11, 098 (2012)], arXiv:1203.3388 [hep-ph] .
  19. A. Cabrera et al., Sci. Rep. 12, 5393 (2022), arXiv:2008.11280 [hep-ph] .
  20. S. Parke, Phys. Rev. D 93, 053008 (2016), arXiv:1601.07464 [hep-ph] .
  21. We use the PDG conventions for the neutrino mixing matrix.
  22. F. P. An et al. (Daya Bay), Phys. Rev. D 95, 072006 (2017), arXiv:1610.04802 [hep-ex] .
  23. G. Bak et al. (RENO), Phys. Rev. Lett. 121, 201801 (2018), arXiv:1806.00248 [hep-ex] .
  24. F. P. An et al. (Daya Bay), Phys. Rev. Lett. 130, 161802 (2023), arXiv:2211.14988 [hep-ex] .
  25. P. B. Denton and S. J. Parke, Phys. Rev. D 109, 053002 (2024), arXiv:2401.10326 [hep-ph] .
  26. If T2K and NOvA reported the |Δ⁢mμ⁢μ2|Δsubscriptsuperscript𝑚2𝜇𝜇|\Delta m^{2}_{\rm\mu\mu}|| roman_Δ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_μ italic_μ end_POSTSUBSCRIPT | fits to their disappearance only data, this comparison could be made more directly without any information needed on c⁢o⁢sδ𝑐𝑜𝑠𝛿\mathop{cos}\nolimits\deltastart_BIGOP italic_c italic_o italic_s end_BIGOP italic_δ.
  27. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz,  and A. Zhou, “Nufit figure on the synergies for the δ⁢m3⁢ℓ2𝛿subscriptsuperscript𝑚23ℓ\delta m^{2}_{3\ell}italic_δ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 roman_ℓ end_POSTSUBSCRIPT’s,”  (2022), http://www.nu-fit.org/sites/default/files/v52.fig-chisq-dma.pdf.
  28. K. Abe et al. (T2K), Eur. Phys. J. C 83, 782 (2023b), arXiv:2303.03222 [hep-ex] .
  29. We fix the solar parameters at their best fit values determined by NuFIT Esteban et al. (2020) Δ⁢m212=7.41×10−5Δsubscriptsuperscript𝑚2217.41superscript105\Delta m^{2}_{21}=7.41\times 10^{-5}roman_Δ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT = 7.41 × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT eV22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT and s⁢i⁢n2θ12=0.303superscript𝑠𝑖𝑛2subscript𝜃120.303\mathop{sin}\nolimits^{2}\theta_{12}=0.303start_BIGOP italic_s italic_i italic_n end_BIGOP start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = 0.303. Small changes in these parameters when measured by JUNO will not effect our results as the experimental uncertainty on Δ⁢matm2Δsubscriptsuperscript𝑚2atm\Delta m^{2}_{\rm atm}roman_Δ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_atm end_POSTSUBSCRIPT from the LBL experiments will dominate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: