Accelerating Discovery of Metal-Insulator Transition Compounds Using Physics-Informed Machine Learning (2404.08653v2)
Abstract: Metal-insulator transition (MIT) materials are a useful platform for emerging microelectronic, optoelectronic, and neuromorphic devices, but their discovery is hindered by the high computational cost of electronic structure modeling, the complexity of underlying mechanisms, and the challenges of experimental validation. Here, we present a physics-informed machine learning framework that accelerates the discovery of thermally driven MIT materials. Using a trained classifier, we screen a crystal structure database to identify promising candidates for higher fidelity simulations. We focus on Ca$_2$Fe$_3$O$_8$, CaCo$_2$O$_4$, and CaMn$_2$O$_4$, and use density functional theory (DFT) to determine their electronic and magnetic ground states and assess their microscopic MIT mechanisms. We further apply machine learning regression models to estimate their transition temperatures and employ synthesis prediction tools to identify likely precursors and reaction routes. This integrated approach reduces the time and effort required to identify, understand, and synthesize new MIT materials, providing a generalizable pathway for accelerating correlated quantum materials discovery.
- Kisiel, E.; Salev, P.; Poudyal, I.; Baptista, F.; Rodolakis, F.; Zhang, Z.; Shpyrko, O.; Schuller, I. K.; Islam, Z.; Frano, A. High-Resolution Full-field Structural Microscopy of the Voltage Induced Filament Formation in Neuromorphic Devices. 2023
- Lee, Y. J.; Kim, Y.; Gim, H.; Hong, K.; Jang, H. W. Nanoelectronics Using Metal-Insulator Transition. Advanced Materials 2305353
- Qiu, E.; Zhang, Y.-H.; Ventra, M. D.; Schuller, I. K. Reconfigurable Cascaded Thermal Neuristors for Neuromorphic Computing. Advanced Materials 2306818
- Hoffmann, A. et al. Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges. APL Materials 2022, 10
- Georgescu, A. B.; Millis, A. J. Quantifying the role of the lattice in metal–insulator phase transitions. Communications Physics 2022, 5
- Jain, A. et al. Commentary : The Materials Project : A materials genome approach to accelerating materials innovation. APL Materials 2013, 011002
- Karpovich, C.; Pan, E.; Jensen, Z.; Olivetti, E. Interpretable Machine Learning Enabled Inorganic Reaction Classification and Synthesis Condition Prediction. Submitted 2022,
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.