Functional reducibility of higher-order networks
Abstract: Empirical complex systems are widely assumed to be characterized not only by pairwise interactions, but also by higher-order (group) interactions that affect collective phenomena, from metabolic reactions to epidemics. Nevertheless, higher-order networks' superior descriptive power -- compared to classical pairwise networks -- comes with a much increased model complexity and computational cost. Consequently, it is of paramount importance to establish a quantitative method to determine when such a modeling framework is advantageous with respect to pairwise models, and to which extent it provides a parsimonious description of empirical systems. Here, we propose a principled method, based on information compression, to analyze the reducibility of higher-order networks to lower-order interactions, by identifying redundancies in diffusion processes while preserving the relevant functional information. The analysis of a broad spectrum of empirical systems shows that, although some networks contain non-compressible group interactions, others can be effectively approximated by lower-order interactions -- some technological and biological systems even just by pairwise interactions. More generally, our findings mark a significant step towards minimizing the dimensionality of models for complex systems
- A.-L. Barabási, N. Gulbahce, and J. Loscalzo, Network medicine: a network-based approach to human disease, Nat. Rev. Genet. 12, 56 (2011).
- E. Bullmore and O. Sporns, The economy of brain network organization, Nat. Rev. Neurosci. 13, 336 (2012).
- M. De Domenico, More is different in real-world multilayer networks, Nat. Phys. 19, 1247 (2023).
- R. Lambiotte, M. Rosvall, and I. Scholtes, From networks to optimal higher-order models of complex systems, Nat. Phys. 15, 313 (2019).
- A. Patania, G. Petri, and F. Vaccarino, The shape of collaborations, EPJ Data Science 6, 1 (2017).
- Y. Zhang, M. Lucas, and F. Battiston, Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes, Nat. Commun. 14, 1605 (2023).
- P. S. Skardal and A. Arenas, Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching, Commun. Phys. 3, 1 (2020).
- A. P. Millán, J. J. Torres, and G. Bianconi, Explosive higher-order kuramoto dynamics on simplicial complexes, Phys. Rev. Lett. 124, 218301 (2020).
- M. Contisciani, F. Battiston, and C. De Bacco, Inference of hyperedges and overlapping communities in hypergraphs, Nat. Commun. 13, 7229 (2022).
- P. S. Chodrow, Configuration models of random hypergraphs, J. Complex Netw. 8, cnaa018 (2020).
- P. Holme and J. Saramäki, Temporal networks, Phys. Rep. 519, 97 (2012).
- F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks, Phys. Rev. E 89, 032804 (2014).
- A. Ghavasieh and M. De Domenico, Enhancing transport properties in interconnected systems without altering their structure, Phys. Rev. Res. 2, 013155 (2020).
- M. De Domenico and J. Biamonte, Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison, Phys. Rev. X 6, 041062 (2016).
- M. Rosvall and C. T. Bergstrom, An information-theoretic framework for resolving community structure in complex networks, Proc. Natl. Acad. Sci. U.S.A. 104, 7327 (2007).
- A. Santoro and V. Nicosia, Algorithmic complexity of multiplex networks, Phys. Rev. X 10, 021069 (2020).
- A. Ghavasieh, C. Nicolini, and M. De Domenico, Statistical physics of complex information dynamics, Phys. Rev. E 102, 052304 (2020).
- M. Lucas, G. Cencetti, and F. Battiston, Multiorder Laplacian for synchronization in higher-order networks, Phys. Rev. Res. 2, 033410 (2020).
- C. S. Wallace and D. M. Boulton, An information measure for classification, The Computer Journal 11, 185 (1968).
- A. Ghavasieh and M. De Domenico, Diversity of information pathways drives sparsity in real-world networks, Nat. Phys. , 1 (2024).
- V. Thibeault, A. Allard, and P. Desrosiers, The low-rank hypothesis of complex systems, Nat. Phys. , 1 (2024).
- SocioPatterns: a collection of contacts datasets (2008), accessed: 2023-08-19.
- W. Kan, What’s cooking? (2015).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.