Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Supervisory Control Theory with Event Forcing (2404.08469v1)

Published 12 Apr 2024 in cs.FL, cs.SY, and eess.SY

Abstract: In the Ramadge-Wonham supervisory control theory the only interaction mechanism between supervisor and plant is that the supervisor may enable/disable events from the plant and the plant makes a final decision about which of the enabled events is actually taking place. In this paper, the interaction between supervisor and plant is enriched by allowing the supervisor to force specific events (called forcible events) that are allowed to preempt uncontrollable events. A notion of forcible-controllability is defined that captures the interplay between controllability of a supervisor w.r.t. the uncontrollable events provided by a plant in the setting with event forcing. Existence of a maximally permissive, forcibly-controllable, nonblocking supervisor is shown and an algorithm is provided that computes such a supervisor. The approach is illustrated by two small case studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. P. Malik, “Generating controllers from discrete-event models,” in Proceedings of the Summer School in Modelling and Verification of Parallel processes, 2002, pp. 337–242.
  2. F. Reijnen, A. Hofkamp, J. van de Mortel-Fronczak, M. Reniers, and J. Rooda, “Finite response and confluence of state-based supervisory controllers,” in 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, pp. 509–516.
  3. F. F. H. Reijnen, T. R. Erens, J. M. van de Mortel-Fronczak, and J. E. Rooda, “Supervisory controller synthesis and implementation for safety plcs,” Discrete Event Dynamic Systems, vol. 32, p. 115–141, 2022).
  4. C. H. Golaszewski and P. J. Ramadge, “Control of discrete event processes with forced events,” 26th IEEE Conference on Decision and Control, vol. 26, pp. 247–251, 1987.
  5. B. A. Brandin and W. M. Wonham, “Supervisory control of timed discrete-event systems,” IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 329–342, 1994.
  6. R. Zhang, K. Cai, Y. Gan, Z. Wang, and W. Wonham, “Supervision localization of timed discrete-event systems,” Automatica, vol. 49, no. 9, pp. 2786–2794, 2013.
  7. S. Takai and T. Ushio, “A new class of supervisors for timed discrete event systems,” Discrete Event Dynamic Systems, vol. 16, no. 2, pp. 257–278, 2006.
  8. A. Rashidinejad, M. Reniers, and L. Feng, “Supervisory control of timed discrete-event systems subject to communication delays and non-fifo observations,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 456–463, 2018.
  9. A. Rashidinejad, P. van der Graaf, and M. Reniers, “Nonblocking supervisory control synthesis of timed automata using abstractions and forcible events,” in 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2020, pp. 1–8.
  10. A. Rashidinejad, P. van der Graaf, M. Reniers, and M. Fabian, “Non-blocking supervisory control of timed automata using forcible events,” IFAC-PapersOnLine, vol. 53, no. 4, pp. 356–362, 2020, 15th IFAC Workshop on Discrete Event Systems WODES 2020 — Rio de Janeiro, Brazil, 11-13 November 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896321000756
  11. T. Ushio and S. Takai, “Control-invariance of hybrid systems with forcible events,” Automatica, vol. 41, no. 4, pp. 669–675, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109804003097
  12. J. Huang and R. Kumar, “Directed control of discrete event systems for safety and nonblocking,” IEEE Transactions on Automation Science and Engineering, vol. 5, no. 4, pp. 620–629, 2008.
  13. S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin, “Supervisory control of a rapid thermal multiprocessor,” IEEE Transactions on Automatic Control, vol. 38, no. 7, pp. 1040–1059, 1993.
  14. P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,” SIAM Journal on Control and Optimization, vol. 25, no. 1, pp. 206–230, 1987.
  15. W. M. Wonham and P. J. Ramadge, “On the supremal controllable sublanguage of a given language,” SIAM Journal on Control and Optimization, vol. 25, no. 3, pp. 637–659, 1987.
  16. H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional synthesis of maximally permissive supervisors using supervision equivalence,” Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 475–504, 2007.
  17. L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nonblocking and safe control of discrete-event systems modeled as extended finite automata,” IEEE Transactions on Automation Science and Engineering, vol. 8, no. 3, pp. 560–569, 2011.
  18. S. Thuijsman and M. Reniers, “Transformational supervisor synthesis for evolving systems,” IFAC-PapersOnLine, vol. 53, no. 4, pp. 309–316, 2020.
  19. P. J. Ramadge and W. M. Wonham, “The control of discrete event systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.
  20. D. van Beek, W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. van de Mortel-Fronczak, and M. Reniers, “CIF 3: Model-based engineering of supervisory controllers,” in Tools and Algorithms for the Construction and Analysis of Systems.   Springer, 2014, pp. 575–580.
  21. W. Fokkink, M. Goorden, D. Hendriks, B. van Beek, A. Hofkamp, F. Reijnen, P. Etman, L. Moormann, A. van de Mortel-Fronczak, M. Reniers, K. Rooda, B. van der Sanden, R. Schiffelers, S. Thuijsman, J. Verbakel, and H. Vogel, “Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit,” in TACAS 2023, 2023).
  22. F. Lin and W. Wonham, “On observability of discrete-event systems,” Information Science, vol. 44, no. 3, pp. 173–198, 1988.
  23. A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: theory and applications,” in 2019 18th European Control Conference, 2019, pp. 3420–3431.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.