Papers
Topics
Authors
Recent
Search
2000 character limit reached

A classification of constant Gaussian curvature surfaces in the three-dimensional hyperbolic space

Published 12 Apr 2024 in math.DG | (2404.08235v1)

Abstract: Weakly complete constant Gaussian curvature $-1<K\<0$ surfaces will be classified in terms of holomorphic quadratic differentials. For this purpose, we will first establish a loop group method for constant Gaussian curvature surfaces in $\mathbb H^3$ with $K>-1$ but $K \neq 0$ by using harmonicities of Lagrangian and Legendrian Gauss maps. Then we will show that a spectral parameter deformation of the Lagrangian harmonic Gauss map gives a harmonic map into $\mathbb H2$ for $-1< K<0$ or $\mathbb S2$ for $K>0$, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Constant Gaussian curvature surfaces in the 3333-sphere via loop groups, Pacific J. Math. 269(2014), no. 2, 281–303.
  2. F. E. Burstall, F. Pedit, Harmonic maps via Adler-Kostant-Symes theory, in Harmonic maps and integrable systems, 221–272, Aspects Math., E23, Friedr. Vieweg, Braunschweig, 1994.
  3. Constant mean curvature surfaces in hyperbolic 3-space via loop group, J. Reine Angew. Math. 686(2014), 1–36, arXiv:1108.1641 [math DG].
  4. Flat surfaces in the hyperbolic 3333-space, Math. Ann. 316(2000), 419–435.
  5. Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Math. Soc. Japan 40(1988), no. 3, 457–476.
  6. T. Klotz, Some uses of the second conformal structure on strictly convex surfaces, Proc. Amer. Math. Soc. 14(1963), 793–799.
  7. S.-P. Kobayashi, Real forms of complex surfaces of constant mean curvature. Trans. Amer. Math. Soc. 363(2011), no. 4, 1765–1788.
  8. F. Labourie, Un lemme de Morse pour les surfaces convexes, Invent. Math. 141(2000), 239–297.
  9. C. R. LeBrun, Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc. 284(1984), 601–616
  10. M. Melko, I. Sterling, Application of soliton theory to the construction of pseudospherical surfaces in 𝐑3superscript𝐑3\textbf{R}^{3}R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, Ann. Global Anal. Geom. 11(1993), no. 1, 65–107.
  11. K. Nomizu, Isometric immersions of the hyperbolic plane into the hyperbolic space, Math. Ann. 205(1973), 181–192.
  12. A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs. Oxford University Press, New York, 1986.
  13. H. Rosenberg, H. Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40(1994), 379–409.
  14. M. Spivak, A comprehensive Introduction to Differential Geometry IV, 2nd ed., Publish or Perish, Wilmington, Del., 1979.
  15. L-F. Tam, T. Y-H Wan, Harmonic diffeomorphisms into Cartan-Hadamard surfaces with prescribed Hopf differentials. Comm. Anal. Geom., 2(1994), no. 4, 593–625.
  16. K. Tenenblat, Transformations of manifolds and applications to differential equations, Longman, 1998.
  17. T. Y-H Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space. J. Differential Geom. 35(1992), no. 3, 643–657.
  18. T. Y-H Wan, T. K-K. Au, Parabolic constant mean curvature spacelike surfaces. Proc. Amer. Math. Soc. 120(1994), no. 2, 559–564.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.