Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

An extension theorem for weak solutions of the 3d incompressible Euler equations and applications to singular flows (2404.08115v2)

Published 11 Apr 2024 in math.AP

Abstract: We prove an extension theorem for local solutions of the 3d incompressible Euler equations. More precisely, we show that if a smooth vector field satisfies the Euler equations in a spacetime region $\Omega\times(0,T)$, one can choose an admissible weak solution on $\mathbf R3\times (0,T)$ of class $C\beta$ for any $\beta<1/3$ such that both fields coincide on $\Omega\times (0,T)$. Moreover, one controls the spatial support of the global solution. Our proof makes use of a new extension theorem for local subsolutions of the incompressible Euler equations and a $C{1/3}$ convex integration scheme implemented in the context of weak solutions with compact support in space. We present two nontrivial applications of these ideas. First, we construct infinitely many admissible weak solutions of class $C\beta_{\text{loc}}$ with the same vortex sheet initial data, which coincide with it at each time $t$ outside a turbulent region of width $O(t)$. Second, given any smooth solution $v$ of the Euler equation on $\mathbf T3\times(0,T)$ and any open set $U \subset \mathbf T3$, we construct admissible weak solutions which coincide with $v$ outside $U$ and are uniformly close to it everywhere at time 0, yet blow up dramatically on a subset of $U\times (0,T)$ of full Hausdorff dimension. These solutions are of class $C\beta$ outside their singular set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.