A Lightweight Protocol for Matchgate Fidelity Estimation (2404.07974v1)
Abstract: We present a low-depth randomised algorithm for the estimation of entanglement fidelity between an $n$-qubit matchgate circuit $\mathcal{U}$ and its noisy implementation $\mathcal{E}$. Our procedure makes use of a modified Pauli-Liouville representation of quantum channels, with Clifford algebra elements as a basis. We show that this choice of representation leads to a block-diagonal compound matrix structure of matchgate superoperators which enables construction of efficient protocols for estimating the fidelity, achieving a $1/\sqrt{n}$ speedup over protocols of Flammia & Liu [PRL 106, 230501]. Finally, we offer simple extensions of our protocol which (without additional overhead) benchmark matchgate circuits intertwined by Clifford circuits, and circuits composed of exclusively nearest-neighbour $XY(\theta)$ gates or Givens rotations - forming the first known method for direct benchmarking of matchgate subgroups.
- R. Jozsa and A. Miyake, Matchgates and classical simulation of quantum circuits, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, 3089 (2008).
- L. G. Valiant, Quantum circuits that can be simulated classically in polynomial time, SIAM Journal on Computing 31, 1229 (2002), https://doi.org/10.1137/S0097539700377025 .
- E. Knill, Fermionic linear optics and matchgates (2001), arXiv:quant-ph/0108033 [quant-ph] .
- B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits, Physical Review A 65, 10.1103/physreva.65.032325 (2002).
- D. P. DiVincenzo and B. M. Terhal, Fermionic linear optics revisited, Foundations of Physics 35, 1967 (2005).
- S. Bravyi, Contraction of matchgate tensor networks on non-planar graphs (2008), arXiv:0801.2989 [quant-ph] .
- A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, Physical Review A 62, 10.1103/physreva.62.022311 (2000).
- S. M. Young, N. T. Jacobson, and J. R. Petta, Optimal control of a cavity-mediated iSWAPiSWAP\mathrm{i}\mathrm{SWAP}roman_iSWAP gate between silicon spin qubits, Phys. Rev. Appl. 18, 064082 (2022).
- S. T. Flammia and Y.-K. Liu, Direct fidelity estimation from few pauli measurements, Physical Review Letters 106, 10.1103/physrevlett.106.230501 (2011).
- M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Physics Letters A 303, 249 (2002).
- J. Burkat, Matchgate benchmarking - github repository (2024).
- E. S. Meckes, The Random Matrix Theory of the Classical Compact Groups, Cambridge Tracts in Mathematics (Cambridge University Press, 2019).
- D. K. Hoffman, R. C. Raffenetti, and K. Ruedenberg, Generalization of Euler Angles to N-Dimensional Orthogonal Matrices, Journal of Mathematical Physics 13, 528 (1972).
- C. Kravvaritis and M. Mitrouli, Compound matrices: properties, numerical issues and analytical computations, Numerical Algorithms 50, 155 (2009).
- K. Nambiar and S. Sreevalsan, Compound matrices and three celebrated theorems, Mathematical and Computer Modelling 34, 251 (2001).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.