Accurate neural quantum states for interacting lattice bosons (2404.07869v2)
Abstract: In recent years, neural quantum states have emerged as a powerful variational approach, achieving state-of-the-art accuracy when representing the ground-state wave function of a great variety of quantum many-body systems, including spin lattices, interacting fermions or continuous-variable systems. However, accurate neural representations of the ground state of interacting bosons on a lattice have remained elusive. We introduce a neural backflow Jastrow Ansatz, in which occupation factors are dressed with translationally equivariant many-body features generated by a deep neural network. We show that this neural quantum state is able to faithfully represent the ground state of the 2D Bose-Hubbard Hamiltonian across all values of the interaction strength. We scale our simulations to lattices of dimension up to $20{\times}20$ while achieving the best variational energies reported for this model. This enables us to investigate the scaling of the entanglement entropy across the superfluid-to-Mott quantum phase transition, a quantity hard to extract with non-variational approaches.
- G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Quantum critical phenomena in one-dimensional Bose systems, Physical Review Letters 65, 1765 (1990).
- W. Krauth, N. Trivedi, and D. Ceperley, Superfluid-insulator transition in disordered boson systems, Physical Review Letters 67, 2307 (1991).
- G. G. Batrouni and R. T. Scalettar, World-line quantum Monte Carlo algorithm for a one-dimensional Bose model, Physical Review B 46, 9051 (1992).
- B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov, Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model, Physical Review B 75, 134302 (2007).
- N. Trivedi and D. M. Ceperley, Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study, Physical Review B 41, 4552 (1990).
- M. Calandra Buonaura and S. Sorella, Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers, Physical Review B 57, 11446 (1998).
- F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems, 1st ed. (2017).
- S. Baroni and S. Moroni, Reptation Quantum Monte Carlo: A Method for Unbiased Ground-State Averages and Imaginary-Time Correlations, Physical Review Letters 82, 4745 (1999).
- M. Troyer and U.-J. Wiese, Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations, Physical Review Letters 94, 170201 (2005).
- P. Henelius and A. W. Sandvik, Sign problem in Monte Carlo simulations of frustrated quantum spin systems, Physical Review B 62, 1102 (2000).
- G. Pan and Z. Y. Meng, The sign problem in quantum Monte Carlo simulations, in Encyclopedia of Condensed Matter Physics (Second Edition), edited by T. Chakraborty (Oxford, 2024) pp. 879–893.
- M. Ö. Oktel, M. Niţă, and B. Tanatar, Mean-field theory for Bose-Hubbard model under a magnetic field, Physical Review B 75, 045133 (2007).
- G. Möller and N. R. Cooper, Condensed ground states of frustrated Bose-Hubbard models, Physical Review A 82, 063625 (2010).
- S. D. Huber and N. H. Lindner, Topological transitions for lattice bosons in a magnetic field, Proceedings of the National Academy of Sciences 108, 19925 (2011).
- A. Tokuno and A. Georges, Ground states of a Bose–Hubbard ladder in an artificial magnetic field: Field-theoretical approach, New Journal of Physics 16, 073005 (2014).
- C. Romen and A. M. Läuchli, Chiral Mott insulators in frustrated Bose-Hubbard models on ladders and two-dimensional lattices: A combined perturbative and density matrix renormalization group study, Physical Review B 98, 054519 (2018).
- T.-S. Zeng, D. N. Sheng, and W. Zhu, Continuous phase transition between bosonic integer quantum Hall liquid and a trivial insulator: Evidence for deconfined quantum criticality, Physical Review B 101, 035138 (2020).
- Y.-F. Song and S.-J. Yang, Quantum phases for bosons in a magnetic lattice with a harmonic trap, New Journal of Physics 22, 073001 (2020).
- C.-M. Halati and T. Giamarchi, Bose-Hubbard triangular ladder in an artificial gauge field, Physical Review Research 5, 013126 (2023).
- D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms, New Journal of Physics 5, 56 (2003).
- F. Gerbier and J. Dalibard, Gauge fields for ultracold atoms in optical superlattices, New Journal of Physics 12, 033007 (2010).
- A. Sterdyniak, N. R. Cooper, and N. Regnault, Bosonic Integer Quantum Hall Effect in Optical Flux Lattices, Physical Review Letters 115, 116802 (2015).
- V. Alba, M. Haque, and A. M. Läuchli, Entanglement Spectrum of the Two-Dimensional Bose-Hubbard Model, Physical Review Letters 110, 260403 (2013).
- M. M. Rams, P. Czarnik, and L. Cincio, Precise Extrapolation of the Correlation Function Asymptotics in Uniform Tensor Network States with Application to the Bose-Hubbard and XXZ Models, Physical Review X 8, 041033 (2018).
- J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics 82, 277 (2010).
- T. D. Kühner and H. Monien, Phases of the one-dimensional Bose-Hubbard model, Physical Review B 58, R14741 (1998).
- S. Rapsch, U. Schollwöck, and W. Zwerger, Density matrix renormalization group for disordered bosons in one dimension, Europhysics Letters 46, 559 (1999).
- C. Kollath, A. M. Läuchli, and E. Altman, Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model, Physical Review Letters 98, 180601 (2007).
- A. M. Läuchli and C. Kollath, Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model, Journal of Statistical Mechanics: Theory and Experiment 2008, P05018 (2008).
- G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602 (2017).
- A. Chen and M. Heyl, Efficient optimization of deep neural quantum states toward machine precision (2023), arxiv:2302.01941 .
- J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nature Chemistry 12, 891 (2020).
- M. Medvidović and D. Sels, Variational Quantum Dynamics of Two-Dimensional Rotor Models, PRX Quantum 4, 040302 (2023).
- H. Saito, Solving the Bose–Hubbard Model with Machine Learning, Journal of the Physical Society of Japan 86, 093001 (2017).
- K. McBrian, G. Carleo, and E. Khatami, Ground state phase diagram of the one-dimensional Bose-Hubbard model from restricted Boltzmann machines, Journal of Physics: Conference Series 1290, 012005 (2019).
- V. Vargas-Calderón, H. Vinck-Posada, and F. A. González, Phase Diagram Reconstruction of the Bose–Hubbard Model with a Restricted Boltzmann Machine Wavefunction, Journal of the Physical Society of Japan 89, 094002 (2020).
- M. Y. Pei and S. R. Clark, Specialising Neural-network Quantum States for the Bose Hubbard Model (2024), arxiv:2402.15424 .
- R. P. Feynman and M. Cohen, Energy Spectrum of the Excitations in Liquid Helium, Physical Review 102, 1189 (1956).
- Y. Kwon, D. M. Ceperley, and R. M. Martin, Effects of three-body and backflow correlations in the two-dimensional electron gas, Physical Review B 48, 12037 (1993).
- Y. Kwon, D. M. Ceperley, and R. M. Martin, Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study, Physical Review B 58, 6800 (1998).
- L. F. Tocchio, F. Becca, and C. Gros, Backflow correlations in the Hubbard model: An efficient tool for the study of the metal-insulator transition and the large-U𝑈Uitalic_U limit, Physical Review B 83, 195138 (2011).
- M. Ruggeri, S. Moroni, and M. Holzmann, Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space, Physical Review Letters 120, 205302 (2018).
- D. Luo and B. K. Clark, Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions, Physical Review Letters 122, 226401 (2019).
- M. A. Metlitski and T. Grover, Entanglement Entropy of Systems with Spontaneously Broken Continuous Symmetry (2015), arxiv:1112.5166 .
- I. Frérot and T. Roscilde, Entanglement Entropy across the Superfluid-Insulator Transition: A Signature of Bosonic Criticality, Physical Review Letters 116, 190401 (2016).
- I. B. Spielman, W. D. Phillips, and J. V. Porto, Mott-Insulator Transition in a Two-Dimensional Atomic Bose Gas, Physical Review Letters 98, 080404 (2007).
- I. B. Spielman, W. D. Phillips, and J. V. Porto, Condensate Fraction in a 2D Bose Gas Measured across the Mott-Insulator Transition, Physical Review Letters 100, 120402 (2008).
- I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Reviews of Modern Physics 80, 885 (2008).
- C. Bruder, R. Fazio, and G. Schön, The Bose-Hubbard model: from Josephson junction arrays to optical lattices, Annalen der Physik 517, 566 (2005).
- W. Krauth and N. Trivedi, Mott and Superfluid Transitions in a Strongly Interacting Lattice Boson System, Europhysics Letters 14, 627 (1991).
- J. K. Freericks and H. Monien, Strong-coupling expansions for the pure and disordered Bose-Hubbard model, Physical Review B 53, 2691 (1996).
- N. Elstner and H. Monien, Dynamics and thermodynamics of the Bose-Hubbard model, Physical Review B 59, 12184 (1999).
- A. Bijl, The lowest wave function of the symmetrical many particles system, Physica 7, 869 (1940).
- R. Jastrow, Many-Body Problem with Strong Forces, Physical Review 98, 1479 (1955).
- L. L. Viteritti, R. Rende, and F. Becca, Transformer Variational Wave Functions for Frustrated Quantum Spin Systems, Physical Review Letters 130, 236401 (2023).
- Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1798 (2013).
- S. Sorella, Wave function optimization in the variational Monte Carlo method, Physical Review B 71, 241103 (2005).
- Federico Becca (private communication, 2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.