Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Accurate neural quantum states for interacting lattice bosons (2404.07869v2)

Published 11 Apr 2024 in quant-ph, cond-mat.quant-gas, and physics.comp-ph

Abstract: In recent years, neural quantum states have emerged as a powerful variational approach, achieving state-of-the-art accuracy when representing the ground-state wave function of a great variety of quantum many-body systems, including spin lattices, interacting fermions or continuous-variable systems. However, accurate neural representations of the ground state of interacting bosons on a lattice have remained elusive. We introduce a neural backflow Jastrow Ansatz, in which occupation factors are dressed with translationally equivariant many-body features generated by a deep neural network. We show that this neural quantum state is able to faithfully represent the ground state of the 2D Bose-Hubbard Hamiltonian across all values of the interaction strength. We scale our simulations to lattices of dimension up to $20{\times}20$ while achieving the best variational energies reported for this model. This enables us to investigate the scaling of the entanglement entropy across the superfluid-to-Mott quantum phase transition, a quantity hard to extract with non-variational approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Quantum critical phenomena in one-dimensional Bose systems, Physical Review Letters 65, 1765 (1990).
  2. W. Krauth, N. Trivedi, and D. Ceperley, Superfluid-insulator transition in disordered boson systems, Physical Review Letters 67, 2307 (1991).
  3. G. G. Batrouni and R. T. Scalettar, World-line quantum Monte Carlo algorithm for a one-dimensional Bose model, Physical Review B 46, 9051 (1992).
  4. B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov, Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model, Physical Review B 75, 134302 (2007).
  5. N. Trivedi and D. M. Ceperley, Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study, Physical Review B 41, 4552 (1990).
  6. M. Calandra Buonaura and S. Sorella, Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers, Physical Review B 57, 11446 (1998).
  7. F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems, 1st ed. (2017).
  8. S. Baroni and S. Moroni, Reptation Quantum Monte Carlo: A Method for Unbiased Ground-State Averages and Imaginary-Time Correlations, Physical Review Letters 82, 4745 (1999).
  9. M. Troyer and U.-J. Wiese, Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations, Physical Review Letters 94, 170201 (2005).
  10. P. Henelius and A. W. Sandvik, Sign problem in Monte Carlo simulations of frustrated quantum spin systems, Physical Review B 62, 1102 (2000).
  11. G. Pan and Z. Y. Meng, The sign problem in quantum Monte Carlo simulations, in Encyclopedia of Condensed Matter Physics (Second Edition), edited by T. Chakraborty (Oxford, 2024) pp. 879–893.
  12. M. Ö. Oktel, M. Niţă, and B. Tanatar, Mean-field theory for Bose-Hubbard model under a magnetic field, Physical Review B 75, 045133 (2007).
  13. G. Möller and N. R. Cooper, Condensed ground states of frustrated Bose-Hubbard models, Physical Review A 82, 063625 (2010).
  14. S. D. Huber and N. H. Lindner, Topological transitions for lattice bosons in a magnetic field, Proceedings of the National Academy of Sciences 108, 19925 (2011).
  15. A. Tokuno and A. Georges, Ground states of a Bose–Hubbard ladder in an artificial magnetic field: Field-theoretical approach, New Journal of Physics 16, 073005 (2014).
  16. C. Romen and A. M. Läuchli, Chiral Mott insulators in frustrated Bose-Hubbard models on ladders and two-dimensional lattices: A combined perturbative and density matrix renormalization group study, Physical Review B 98, 054519 (2018).
  17. T.-S. Zeng, D. N. Sheng, and W. Zhu, Continuous phase transition between bosonic integer quantum Hall liquid and a trivial insulator: Evidence for deconfined quantum criticality, Physical Review B 101, 035138 (2020).
  18. Y.-F. Song and S.-J. Yang, Quantum phases for bosons in a magnetic lattice with a harmonic trap, New Journal of Physics 22, 073001 (2020).
  19. C.-M. Halati and T. Giamarchi, Bose-Hubbard triangular ladder in an artificial gauge field, Physical Review Research 5, 013126 (2023).
  20. D. Jaksch and P. Zoller, Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms, New Journal of Physics 5, 56 (2003).
  21. F. Gerbier and J. Dalibard, Gauge fields for ultracold atoms in optical superlattices, New Journal of Physics 12, 033007 (2010).
  22. A. Sterdyniak, N. R. Cooper, and N. Regnault, Bosonic Integer Quantum Hall Effect in Optical Flux Lattices, Physical Review Letters 115, 116802 (2015).
  23. V. Alba, M. Haque, and A. M. Läuchli, Entanglement Spectrum of the Two-Dimensional Bose-Hubbard Model, Physical Review Letters 110, 260403 (2013).
  24. M. M. Rams, P. Czarnik, and L. Cincio, Precise Extrapolation of the Correlation Function Asymptotics in Uniform Tensor Network States with Application to the Bose-Hubbard and XXZ Models, Physical Review X 8, 041033 (2018).
  25. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics 82, 277 (2010).
  26. T. D. Kühner and H. Monien, Phases of the one-dimensional Bose-Hubbard model, Physical Review B 58, R14741 (1998).
  27. S. Rapsch, U. Schollwöck, and W. Zwerger, Density matrix renormalization group for disordered bosons in one dimension, Europhysics Letters 46, 559 (1999).
  28. C. Kollath, A. M. Läuchli, and E. Altman, Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model, Physical Review Letters 98, 180601 (2007).
  29. A. M. Läuchli and C. Kollath, Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model, Journal of Statistical Mechanics: Theory and Experiment 2008, P05018 (2008).
  30. G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602 (2017).
  31. A. Chen and M. Heyl, Efficient optimization of deep neural quantum states toward machine precision (2023), arxiv:2302.01941 .
  32. J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nature Chemistry 12, 891 (2020).
  33. M. Medvidović and D. Sels, Variational Quantum Dynamics of Two-Dimensional Rotor Models, PRX Quantum 4, 040302 (2023).
  34. H. Saito, Solving the Bose–Hubbard Model with Machine Learning, Journal of the Physical Society of Japan 86, 093001 (2017).
  35. K. McBrian, G. Carleo, and E. Khatami, Ground state phase diagram of the one-dimensional Bose-Hubbard model from restricted Boltzmann machines, Journal of Physics: Conference Series 1290, 012005 (2019).
  36. V. Vargas-Calderón, H. Vinck-Posada, and F. A. González, Phase Diagram Reconstruction of the Bose–Hubbard Model with a Restricted Boltzmann Machine Wavefunction, Journal of the Physical Society of Japan 89, 094002 (2020).
  37. M. Y. Pei and S. R. Clark, Specialising Neural-network Quantum States for the Bose Hubbard Model (2024), arxiv:2402.15424 .
  38. R. P. Feynman and M. Cohen, Energy Spectrum of the Excitations in Liquid Helium, Physical Review 102, 1189 (1956).
  39. Y. Kwon, D. M. Ceperley, and R. M. Martin, Effects of three-body and backflow correlations in the two-dimensional electron gas, Physical Review B 48, 12037 (1993).
  40. Y. Kwon, D. M. Ceperley, and R. M. Martin, Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study, Physical Review B 58, 6800 (1998).
  41. L. F. Tocchio, F. Becca, and C. Gros, Backflow correlations in the Hubbard model: An efficient tool for the study of the metal-insulator transition and the large-U𝑈Uitalic_U limit, Physical Review B 83, 195138 (2011).
  42. M. Ruggeri, S. Moroni, and M. Holzmann, Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space, Physical Review Letters 120, 205302 (2018).
  43. D. Luo and B. K. Clark, Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions, Physical Review Letters 122, 226401 (2019).
  44. M. A. Metlitski and T. Grover, Entanglement Entropy of Systems with Spontaneously Broken Continuous Symmetry (2015), arxiv:1112.5166 .
  45. I. Frérot and T. Roscilde, Entanglement Entropy across the Superfluid-Insulator Transition: A Signature of Bosonic Criticality, Physical Review Letters 116, 190401 (2016).
  46. I. B. Spielman, W. D. Phillips, and J. V. Porto, Mott-Insulator Transition in a Two-Dimensional Atomic Bose Gas, Physical Review Letters 98, 080404 (2007).
  47. I. B. Spielman, W. D. Phillips, and J. V. Porto, Condensate Fraction in a 2D Bose Gas Measured across the Mott-Insulator Transition, Physical Review Letters 100, 120402 (2008).
  48. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Reviews of Modern Physics 80, 885 (2008).
  49. C. Bruder, R. Fazio, and G. Schön, The Bose-Hubbard model: from Josephson junction arrays to optical lattices, Annalen der Physik 517, 566 (2005).
  50. W. Krauth and N. Trivedi, Mott and Superfluid Transitions in a Strongly Interacting Lattice Boson System, Europhysics Letters 14, 627 (1991).
  51. J. K. Freericks and H. Monien, Strong-coupling expansions for the pure and disordered Bose-Hubbard model, Physical Review B 53, 2691 (1996).
  52. N. Elstner and H. Monien, Dynamics and thermodynamics of the Bose-Hubbard model, Physical Review B 59, 12184 (1999).
  53. A. Bijl, The lowest wave function of the symmetrical many particles system, Physica 7, 869 (1940).
  54. R. Jastrow, Many-Body Problem with Strong Forces, Physical Review 98, 1479 (1955).
  55. L. L. Viteritti, R. Rende, and F. Becca, Transformer Variational Wave Functions for Frustrated Quantum Spin Systems, Physical Review Letters 130, 236401 (2023).
  56. Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1798 (2013).
  57. S. Sorella, Wave function optimization in the variational Monte Carlo method, Physical Review B 71, 241103 (2005).
  58. Federico Becca (private communication, 2023).
Citations (4)

Summary

  • The paper introduces the neural backflow Jastrow Ansatz that accurately captures the ground state of interacting lattice bosons in the 2D Bose-Hubbard model.
  • It combines backflow and Jastrow factors enhanced by deep neural network features to overcome the limitations of traditional simulation techniques.
  • The Ansatz achieves variational V-scores as low as 2x10^-4, demonstrating exceptional scalability and precision across phase transitions.

Accurate Neural Quantum States for Interacting Lattice Bosons

The paper on "Accurate neural quantum states for interacting lattice bosons" presents a significant advancement in the representation of ground-state wave functions for lattice bosons using neural quantum states (NQS). The authors introduce a novel variational Ansatz, the neural backflow Jastrow Ansatz, which improves upon existing methods by accurately capturing the ground-state properties of the 2D Bose-Hubbard model across various interaction strengths.

The paper addresses the challenge of simulating interacting lattice bosons, a task complicated by the exponential growth of the Hilbert space with system size and particle number. Such systems are notoriously difficult to solve beyond mean-field approximations due to their complex quantum statistics. Previous methods like path-integral and quantum Monte Carlo techniques had limitations, particularly in directly accessing wave functions or suffering from the sign problem in certain scenarios.

The introduced neural backflow Jastrow Ansatz is a combination of backflow and Jastrow factors, where occupation factors are enriched with translationally equivariant many-body features generated by a deep neural network. This neural network effectively models complex many-body correlations, surpassing traditional Jastrow-type wave functions. The authors provide a robust analytical foundation for the structure and capabilities of the Ansatz, highlighting its ability to capture intricate correlations and phase transitions.

In their simulations, the authors demonstrate the capability of the neural backflow Jastrow Ansatz to represent the ground state of the 2D Bose-Hubbard Hamiltonian for lattices up to 20x20 in size, providing the best variational energies reported for this model. The paper benchmarks variational energies against Green-function Monte Carlo results, confirming the Ansatz's high accuracy with V-scores reaching as low as 2x10-4. Notably, the approach scales efficiently, maintaining accuracy across multiple system sizes.

The paper's analytical and numerical sections reveal that the Ansatz can comprehensively account for Mott insulator and superfluid phases, including their transitions. Especially notable is the investigation of entanglement entropy scaling across the superfluid-to-Mott transition, aligning with theoretical predictions and offering insights into its critical behavior.

The theoretical and practical implications of this research are profound. The neural backflow Jastrow Ansatz provides a flexible and scalable tool for accurately modeling lattice bosonic systems, facilitating studies beyond the reach of current methods. This paves the way for applying NQS to complex bosonic lattices, potentially addressing the limitations posed by the sign problem in traditional quantum Monte Carlo simulations.

Future research can expand the applicability of this Ansatz to explore other quantum phenomena in lattice bosons, such as those subjected to synthetic magnetic fields or driven-dissipative dynamics. The flexibility and accuracy demonstrated by the neural Ansatz suggest significant potential for advancing our understanding of quantum many-body systems.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 257 likes.