2000 character limit reached
Local Jordan-Wigner transformations on the torus (2404.07727v1)
Published 11 Apr 2024 in quant-ph, cond-mat.str-el, math-ph, and math.MP
Abstract: We present a locality preserving unitary mapping from fermions to qubits on a 2D torus whilst accounting for the mapping of topological sectors. Extending the work of Shukla et al. [Phys. Rev. B 101, 155105], an explicit intertwiner is constructed in the form of a projected entangled pair operator. By encoding the information about the charge sectors (and if applicable the twisted boundary conditions) in ancillary qubit(s), the intertwiner becomes a unitary operator which exchanges boundary conditions and charge sectors.
- S. K. Shukla, T. D. Ellison, and L. Fidkowski, Tensor network approach to two-dimensional bosonization, Physical Review B 101, 10.1103/physrevb.101.155105 (2020).
- P. Jordan and E. P. Wigner, Über das paulische äquivalenzverbot, in The Collected Works of Eugene Paul Wigner (Springer, 1993) pp. 109–129.
- J. K. Jain, Incompressible quantum hall states, Phys. Rev. B 40, 8079 (1989).
- A. Lopez and E. Fradkin, Fractional quantum hall effect and chern-simons gauge theories, Phys. Rev. B 44, 5246 (1991).
- B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled landau level, Phys. Rev. B 47, 7312 (1993).
- S. Bravyi and A. Kitaev, Fermionic quantum computation, Annals of Physics 298, 210 (2002), arXiv: quant-ph/0003137.
- F. Verstraete and J. I. Cirac, Mapping local hamiltonians of fermions to local hamiltonians of spins, Journal of Statistical Mechanics: Theory and Experiment 2005, P09012–P09012 (2005).
- R. C. Ball, Fermions without fermion fields, Phys. Rev. Lett. 95, 176407 (2005).
- J. T. Seeley, M. J. Richard, and P. J. Love, The Bravyi-Kitaev transformation for quantum computation of electronic structure, The Journal of Chemical Physics 137, 224109 (2012), arXiv: 1208.5986.
- J. D. Whitfield, V. Havlíček, and M. Troyer, Local spin operators for fermion simulations, Phys. Rev. A 94, 030301 (2016).
- V. Havlíček, M. Troyer, and J. D. Whitfield, Operator locality in the quantum simulation of fermionic models, Physical Review A 95, 10.1103/physreva.95.032332 (2017).
- M. Steudtner and S. Wehner, Quantum codes for quantum simulation of Fermions on a square lattice of qubits, Physical Review A 99, 022308 (2019), arXiv:1810.02681 [quant-ph].
- S. Backens, A. Shnirman, and Y. Makhlin, Jordan–wigner transformations for tree structures, Scientific Reports 9, 10.1038/s41598-018-38128-8 (2019).
- M. Chiew and S. Strelchuk, Discovering optimal fermion-qubit mappings through algorithmic enumeration, Quantum 7, 1145 (2023).
- Y.-A. Chen and Y. Xu, Equivalence between Fermion-to-Qubit Mappings in two Spatial Dimensions, PRX Quantum 4, 010326 (2023), publisher: American Physical Society.
- O. O’Brien and S. Strelchuk, Ultrafast hybrid fermion-to-qubit mapping, Phys. Rev. B 109, 115149 (2024).
- Y.-A. Chen, A. Kapustin, and D. Radicevic, Exact bosonization in two spatial dimensions and a new class of lattice gauge theories, Annals of Physics 393, 234–253 (2018).
- E. Zohar and J. I. Cirac, Eliminating fermionic matter fields in lattice gauge theories, Physical Review B 98, 10.1103/physrevb.98.075119 (2018).
- L. Lootens, C. Delcamp, and F. Verstraete, Dualities in One-Dimensional Quantum Lattice Models: Topological Sectors, PRX Quantum 5, 010338 (2024), arXiv:2211.03777 [quant-ph] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.