Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The classical-quantum hybrid canonical dynamics and its difficulties with special and general relativity (2404.07723v2)

Published 11 Apr 2024 in gr-qc and quant-ph

Abstract: We discuss the Hamiltonian hybrid coupling between a classical and a quantum subsystem. If applicable to classical gravity coupled to quantized matter, this hybrid theory might realize a captivating `postquantum' alternative to full quantum-gravity. We summarize the nonrelativistic hybrid dynamics in improved formalism adequate to Hamiltonian systems. The mandatory decoherence and diffusion terms become divergent in special and general relativistic extensions. It is not yet known if any renormalization method might reconcile Markovian decoherence and diffusion with relativity. Postquantum gravity could previously only be realized in the Newtonian approximation. We argue that pending problems of the recently proposed general relativistic postquantum theory will not be solved if Markovian diffusion/decoherence are truly incompatible with relativity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. C Møller, “Les theories relativistes de la gravitation (paris: Cnrs); rosenfeld l 1963,” Nucl. Phys 40, 353 (1962).
  2. Leon Rosenfeld, “On quantization of fields,” Nuclear Physics 40, 353–356 (1963).
  3. John Maddox, “Classical and quantum physics mix,” Nature 373, 469 (1995).
  4. Arlen Anderson, “Quantum backreaction on ”classical” variables,” Phys. Rev. Lett. 74, 621–625 (1995).
  5. Lajos Diósi, “Comment on“quantum backreaction onclassical’variables”,” Physical Review Letters 76, 4088 (1996).
  6. Lajos Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Physical Review A 40, 1165 (1989).
  7. Lajos Diósi, “Relativistic theory for continuous measurement of quantum fields,” Physical Review A 42, 5086 (1990).
  8. Lajos Diósi, “Quantum dynamics with two planck constants and the semiclassical limit,” arXiv preprint quant-ph/9503023  (1995).
  9. Lajos Diósi and Jonathan J. Halliwell, “Coupling classical and quantum variables using continuous quantum measurement theory,” Phys. Rev. Lett. 81, 2846–2849 (1998).
  10. Lajos Diósi, “The gravity-related decoherence master equation from hybrid dynamics,” Journal of Physics: Conference Series 306, 012006 (2011).
  11. Antoine Tilloy and Lajos Diósi, “Sourcing semiclassical gravity from spontaneously localized quantum matter,” Phys. Rev. D 93, 024026 (2016).
  12. Antoine Tilloy and Lajos Diósi, ‘‘Principle of least decoherence for newtonian semiclassical gravity,” Phys. Rev. D 96, 104045 (2017).
  13. Jonathan Oppenheim and Zachary Weller-Davies, “The constraints of post-quantum classical gravity,” Journal of High Energy Physics 2022, 1–39 (2022).
  14. Isaac Layton, Jonathan Oppenheim,  and Zachary Weller-Davies, “A healthier semi-classical dynamics,” preprint arXiv:2208.11722  (2022).
  15. Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda,  and Zachary Weller-Davies, “Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity,” Nature Communications 14, 7910 (2023a).
  16. Jonathan Oppenheim, “A postquantum theory of classical gravity?” Phys. Rev. X 13, 041040 (2023).
  17. IV Aleksandrov, “The statistical dynamics of a system consisting of a classical and a quantum subsystem,” Zeitschrift für Naturforschung A 36, 902–908 (1981).
  18. Viktor Ivanovych Gerasimenko, “Dynamical equations of quantum-classical systems,” Teoreticheskaya i Matematicheskaya Fizika 50, 77–87 (1982).
  19. Wayne Boucher and Jennie Traschen, “Semiclassical physics and quantum fluctuations,” Physical Review D 37, 3522 (1988).
  20. Lajos Diósi, “On hybrid dynamics of the copenhagen dichotomic world,” in Trends In Quantum Mechanics-Proceedings Of The International Symposium (World Scientific, 2000) p. 78.
  21. Lajos Diósi, Nicolas Gisin,  and Walter T. Strunz, “Quantum approach to coupling classical and quantum dynamics,” Phys. Rev. A 61, 022108 (2000).
  22. Lajos Diósi, “Hybrid quantum-classical master equations,” Physica Scripta 2014, 014004 (2014).
  23. Philippe Blanchard and Arkadiusz Jadczyk, “On the interaction between classical and quantum systems,” Physics Letters A 175, 157–164 (1993).
  24. Ph Blanchard and A Jadczyk, “Events and piecewise deterministic dynamics in event-enhanced quantum theory,” Physics Letters A 203, 260–266 (1995).
  25. Robert Alicki and Stanisław Kryszewski, “Completely positive bloch-boltzmann equations,” Physical Review A 68, 013809 (2003).
  26. Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda,  and Zachary Weller-Davies, “The two classes of hybrid classical-quantum dynamics,” preprint arXiv:2203.01332  (2022).
  27. Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda,  and Zachary Weller-Davies, “Objective trajectories in hybrid classical-quantum dynamics,” Quantum 7, 891 (2023b).
  28. Lajos Diósi, “Hybrid completely positive markovian quantum-classical dynamics,” Phys. Rev. A 107, 062206 (2023a).
  29. Lajos Diósi, “Erratum: Hybrid completely positive markovian quantum-classical dynamics [phys. rev. a 107, 062206 (2023)],” Phys. Rev. A 108, 059902 (2023b).
  30. Antoine Tilloy, “General quantum-classical dynamics as measurement based feedback,” arXiv preprint arXiv:2403.19748 , 2024 (2018).
  31. Lajos Diósi, “Is there a relativistic gorini-kossakowski-lindblad-sudarshan master equation?” Phys. Rev. D 106, L051901 (2022).
  32. Sandro Donadi, Kristian Piscicchia, Catalina Curceanu, Lajos Diósi, Matthias Laubenstein,  and Angelo Bassi, “Underground test of gravity-related wave function collapse,” Nature Physics 17, 74–78 (2021).
  33. Angelo Bassi, Kinjalk Lochan, Seema Satin, Tejinder P Singh,  and Hendrik Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Reviews of Modern Physics 85, 471 (2013).
  34. Angelo Bassi, Mauro Dorato,  and Hendrik Ulbricht, “Collapse models: a theoretical, experimental and philosophical review,” Entropy 25, 645 (2023).
  35. Tim Folger, “Quantum gravity in the lab,” Scientific American 320, 48–55 (2019).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: