Papers
Topics
Authors
Recent
2000 character limit reached

Topology of shallow-water waves on the rotating sphere (2404.07655v2)

Published 11 Apr 2024 in physics.flu-dyn, astro-ph.EP, cond-mat.mes-hall, and physics.ao-ph

Abstract: Topological properties of the spectrum of shallow-water waves on a rotating spherical body are established. Particular attention is paid to its spectral flow, i.e. the modes whose frequencies transit between the Rossby and inertia-gravity wavebands as the zonal wave number is varied. Organising the modes according to the number of zeros of their meridional velocity, we conclude that the net number of modes transiting between the shallow-water wavebands on the sphere is null, in contrast with the Matsuno spectrum. This difference can be explained by a miscount of zeros under the $\beta$-plane approximation. We corroborate this result with the analysis of Delplace et al (2017) by showing that the curved metric discloses a pair of degeneracy points in the Weyl symbol of the wave operator, non-existent under the $\beta$-plane approximation, each of them bearing a Chern number $-1$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. P. Delplace, J. Marston, and A. Venaille, “Topological origin of equatorial waves,” Science, vol. 358, no. 6366, pp. 1075–1077, 2017.
  2. Academic press, 1982.
  3. G. K. Vallis, Atmospheric and oceanic fluid dynamics. Cambridge University Press, 2017.
  4. V. Zeitlin, GEOPHYSICAL FLUID DYNAMICS: Understanding (almost) everything with rotating shallow water models. Oxford University Press, 2018.
  5. P. A. Gilman, “Magnetohydrodynamic “shallow water” equations for the solar tachocline,” The Astrophysical Journal, vol. 544, no. 1, p. L79, 2000.
  6. T. Zaqarashvili, R. Oliver, and J. Ballester, “Global shallow water magnetohydrodynamic waves in the solar tachocline,” The Astrophysical Journal, vol. 691, no. 1, p. L41, 2009.
  7. T. Zaqarashvili, M. Albekioni, J. Ballester, Y. Bekki, L. Biancofiore, A. Birch, M. Dikpati, L. Gizon, E. Gurgenashvili, E. Heifetz, et al., “Rossby waves in astrophysics,” Space Science Reviews, vol. 217, pp. 1–93, 2021.
  8. W. Thomson, “1. on gravitational oscillations of rotating water,” Proceedings of the Royal Society of Edinburgh, vol. 10, pp. 92–100, 1880.
  9. C.-G. Rossby, “Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action,” J. mar. Res., vol. 2, pp. 38–55, 1939.
  10. H. Stommel, “The westward intensification of wind-driven ocean currents,” Eos, Transactions American Geophysical Union, vol. 29, no. 2, pp. 202–206, 1948.
  11. W. H. Munk and G. F. Carrier, “The wind-driven circulation in ocean basins of various shapes,” Tellus, vol. 2, no. 3, pp. 158–167, 1950.
  12. C. Rossby, “On displacements and intensity changes of atmospheric vortices,” Journal of Marine Research, vol. 7, no. 3, 1948.
  13. T. Matsuno, “Quasi-geostrophic motions in the equatorial area,” Journal of the Meteorological Society of Japan. Ser. II, vol. 44, no. 1, pp. 25–43, 1966.
  14. Q. Niu, D. J. Thouless, and Y.-S. Wu, “Quantized hall conductance as a topological invariant,” Physical Review B, vol. 31, no. 6, p. 3372, 1985.
  15. F. Faure, “Manifestation of the topological index formula in quantum waves and geophysical waves,” Annales Henri Lebesgue, vol. 6, pp. 449–492, 2023.
  16. P. Delplace, “Berry-chern monopoles and spectral flows,” SciPost Physics Lecture Notes, p. 039, 2022.
  17. H. Qin and Y. Fu, “Topological langmuir-cyclotron wave,” Science Advances, vol. 9, no. 13, p. eadd8041, 2023.
  18. M. Perrot, P. Delplace, and A. Venaille, “Topological transition in stratified fluids,” Nature Physics, vol. 15, no. 8, pp. 781–784, 2019.
  19. A. Venaille and P. Delplace, “Wave topology brought to the coast,” Physical Review Research, vol. 3, no. 4, p. 043002, 2021.
  20. N. Perez, P. Delplace, and A. Venaille, “Unidirectional modes induced by nontraditional coriolis force in stratified fluids,” Physical Review Letters, vol. 128, no. 18, p. 184501, 2022.
  21. A. Leclerc, G. Laibe, P. Delplace, A. Venaille, and N. Perez, “Topological modes in stellar oscillations,” The Astrophysical Journal, vol. 940, no. 1, p. 84, 2022.
  22. J. B. Parker, J. Marston, S. M. Tobias, and Z. Zhu, “Topological gaseous plasmon polariton in realistic plasma,” Physical Review Letters, vol. 124, no. 19, p. 195001, 2020.
  23. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature, vol. 461, no. 7265, pp. 772–775, 2009.
  24. A. Souslov, B. C. Van Zuiden, D. Bartolo, and V. Vitelli, “Topological sound in active-liquid metamaterials,” Nature Physics, vol. 13, no. 11, pp. 1091–1094, 2017.
  25. S. Shankar, M. J. Bowick, and M. C. Marchetti, “Topological sound and flocking on curved surfaces,” Physical Review X, vol. 7, no. 3, p. 031039, 2017.
  26. L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and W. T. Irvine, “Topological mechanics of gyroscopic metamaterials,” Proceedings of the National Academy of Sciences, vol. 112, no. 47, pp. 14495–14500, 2015.
  27. A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alu, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nature communications, vol. 6, no. 1, p. 8260, 2015.
  28. K. Yoshida, “A theory of the cromwell current (the equatorial undercurrent) and of the equatorial upwelling an interpretation in a similarity to a costal circulation,” Journal of the Oceanographical Society of Japan, vol. 15, no. 4, pp. 159–170, 1960.
  29. M. Margules, Air motions in a rotating spheroidal shell. Advanced Study Program, National Center for Atmospheric Research, 1980.
  30. S. S. Hough, “V. on the application of harmonic analysis to the dynamical theory of the tides.—part ii. on the general integration of laplace’s dynamical equations,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 191, pp. 139–185, 1898.
  31. M. S. Longuet-Higgins, “The eigenfunctions of laplace’s tidal equation over a sphere,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 262, no. 1132, pp. 511–607, 1968.
  32. A. F. Bridger and D. E. Stevens, “Long atmospheric waves and the polar-plane approximation to the earth’s spherical geometry,” Journal of the Atmospheric Sciences, vol. 37, no. 3, pp. 534–544, 1980.
  33. D. Müller and J. O’Brien, “Shallow water waves on the rotating sphere,” Physical Review E, vol. 51, no. 5, p. 4418, 1995.
  34. P. J. Dellar, “Variations on a beta-plane: derivation of non-traditional beta-plane equations from hamilton’s principle on a sphere,” Journal of Fluid Mechanics, vol. 674, pp. 174–195, 2011.
  35. N. Paldor, Shallow water waves on the rotating Earth. Springer, 2015.
  36. G. M. Vasil, D. Lecoanet, K. J. Burns, J. S. Oishi, and B. P. Brown, “Tensor calculus in spherical coordinates using jacobi polynomials. part-i: Mathematical analysis and derivations,” Journal of Computational Physics: X, vol. 3, p. 100013, 2019.
  37. N. Perez, Topological waves in geophysical and astrophysical fluids. PhD thesis, Ecole normale supérieure de lyon-ENS LYON, 2022.
  38. Springer Science & Business Media, 2010.
  39. M. S. Longuet-Higgins, “Planetary waves on a rotating sphere. ii,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 284, no. 1396, pp. 40–68, 1965.
  40. D. Müller, B. Kelly, and J. O’brien, “Spheroidal eigenfunctions of the tidal equation,” Physical review letters, vol. 73, no. 11, p. 1557, 1994.
  41. H. Taşeli, “Exact analytical solutions of the hamiltonian with a squared tangent potential,” Journal of mathematical chemistry, vol. 34, pp. 243–251, 2003.
  42. N. Paldor, I. Fouxon, O. Shamir, and C. I. Garfinkel, “The mixed rossby–gravity wave on the spherical earth,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. 715, pp. 1820–1830, 2018.
  43. K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, “Dedalus: A flexible framework for numerical simulations with spectral methods,” Physical Review Research, vol. 2, p. 023068, Apr. 2020.
  44. X. Tan and A. P. Showman, “Atmospheric circulation of tidally locked gas giants with increasing rotation and implications for white dwarf–brown dwarf systems,” The Astrophysical Journal, vol. 902, no. 1, p. 27, 2020.
  45. J. Monnier, R. Townsend, X. Che, M. Zhao, T. Kallinger, J. Matthews, and A. Moffat, “Rotationally modulated g-modes in the rapidly rotating δ𝛿\deltaitalic_δ scuti star rasalhague (α𝛼\alphaitalic_α ophiuchi),” The Astrophysical Journal, vol. 725, no. 1, p. 1192, 2010.
  46. A. P. Showman, J. Y. Cho, and K. Menou, “Atmospheric circulation of exoplanets,” Exoplanets, vol. 526, pp. 471–516, 2010.
  47. O. Shamir, C. I. Garfinkel, E. P. Gerber, and N. Paldor, “The matsuno–gill model on the sphere,” Journal of Fluid Mechanics, vol. 964, p. A32, 2023.
  48. A. D. Del Genio and W. B. Rossow, “Planetary-scale waves and the cyclic nature of cloud top dynamics on venus,” Journal of Atmospheric Sciences, vol. 47, no. 3, pp. 293–318, 1990.
  49. E. S. Johnson and M. J. Mc Phaden, “Structure of intraseasonal kelvin waves in the equatorial pacific ocean,” Journal of physical oceanography, vol. 23, no. 4, pp. 608–625, 1993.
  50. J. Sprintall, A. L. Gordon, R. Murtugudde, and R. D. Susanto, “A semiannual indian ocean forced kelvin wave observed in the indonesian seas in may 1997,” Journal of Geophysical Research: Oceans, vol. 105, no. C7, pp. 17217–17230, 2000.
  51. G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, “Convectively coupled equatorial waves,” Reviews of Geophysics, vol. 47, no. 2, 2009.
  52. T. Sakazaki and K. Hamilton, “An array of ringing global free modes discovered in tropical surface pressure data,” Journal of the Atmospheric Sciences, vol. 77, no. 7, pp. 2519–2539, 2020.
  53. K. Menou and E. Rauscher, “Atmospheric circulation of hot jupiters: a shallow three-dimensional model,” The Astrophysical Journal, vol. 700, no. 1, p. 887, 2009.
  54. A. P. Showman, A. P. Ingersoll, R. Achterberg, and Y. Kaspi, “The global atmospheric circulation of saturn,” Saturn in the 21st Century, vol. 20, p. 295, 2018.
  55. N. Gavriel and Y. Kaspi, “The number and location of jupiter’s circumpolar cyclones explained by vorticity dynamics,” Nature geoscience, vol. 14, no. 8, pp. 559–563, 2021.
  56. J. Legarreta, N. Barrado-Izagirre, E. García-Melendo, A. Sanchez-Lavega, and J. M. Gómez-Forrellad, “A large active wave trapped in jupiter’s equator,” Astronomy & Astrophysics, vol. 586, p. A154, 2016.
  57. Z. Zhu, C. Li, and J. Marston, “Topology of rotating stratified fluids with and without background shear flow,” Physical Review Research, vol. 5, no. 3, p. 033191, 2023.
  58. K. Iga, “Transition modes of rotating shallow water waves in a channel,” Journal of Fluid Mechanics, vol. 294, pp. 367–390, 1995.
  59. C. Tauber, P. Delplace, and A. Venaille, “A bulk-interface correspondence for equatorial waves,” Journal of Fluid Mechanics, vol. 868, p. R2, 2019.
  60. F. Faure and B. Zhilinskii, “Topological chern indices in molecular spectra,” Physical review letters, vol. 85, no. 5, p. 960, 2000.
  61. Y. Fu and H. Qin, “Topological phases and bulk-edge correspondence of magnetized cold plasmas,” Nature Communications, vol. 12, no. 1, p. 3924, 2021.
  62. B. C. Hall, Quantum theory for mathematicians. Springer, 2013.
  63. D. S. Ageev and A. A. Iliasov, “Unveiling topological modes on curved surfaces,” Physical Review B, vol. 109, no. 8, p. 085435, 2024.
  64. C. Gneiting, T. Fischer, and K. Hornberger, “Quantum phase-space representation for curved configuration spaces,” Physical Review A, vol. 88, no. 6, p. 062117, 2013.
  65. R. G. Littlejohn and W. G. Flynn, “Geometric phases in the asymptotic theory of coupled wave equations,” Physical Review A, vol. 44, no. 8, p. 5239, 1991.
  66. Y. Onuki, “Quasi-local method of wave decomposition in a slowly varying medium,” Journal of Fluid Mechanics, vol. 883, p. A56, 2020.
  67. N. Perez, P. Delplace, and A. Venaille, “Manifestation of the berry curvature in geophysical ray tracing,” Proceedings of the Royal Society A, vol. 477, no. 2248, p. 20200844, 2021.
  68. A. Venaille, Y. Onuki, N. Perez, and A. Leclerc, “From ray tracing to topological waves in continuous media,” arXiv preprint arXiv:2207.01479, 2022.
  69. F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the" parity anomaly",” Physical review letters, vol. 61, no. 18, p. 2015, 1988.
  70. L. Jezequel and P. Delplace, “Mode-shell correspondence, a unifying phase space theory in topological physics – part i: Chiral number of zero-modes,” arXiv preprint arXiv:2310.05656, 2023.
  71. A. Kaufman, J. Morehead, A. Brizard, and E. Tracy, “Mode conversion in the gulf of guinea,” Journal of Fluid Mechanics, vol. 394, pp. 175–192, 1999.
  72. C. I. Garfinkel, I. Fouxon, O. Shamir, and N. Paldor, “Classification of eastward propagating waves on the spherical earth,” Quarterly Journal of the Royal Meteorological Society, vol. 143, no. 704, pp. 1554–1564, 2017.
  73. R. Green, J. Armas, J. de Boer, and L. Giomi, “Topological waves in passive and active fluids on curved surfaces: a unified picture,” arXiv preprint arXiv:2011.12271, 2020.
  74. G. Li and D. K. Efimkin, “Equatorial waves in rotating bubble-trapped superfluids,” Physical Review A, vol. 107, no. 2, p. 023319, 2023.
  75. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 392, no. 1802, pp. 45–57, 1984.
  76. T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern numbers in discretized brillouin zone: efficient method of computing (spin) hall conductances,” Journal of the Physical Society of Japan, vol. 74, no. 6, pp. 1674–1677, 2005.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.