Preservation of scalar spin chirality across a metallic spacer in synthetic antiferromagnets with chiral interlayer interactions (2404.07637v4)
Abstract: Chiral magnetic textures are key for the development of modern spintronic devices. In multilayered thin films, these are typically stabilized via the interfacial intralayer Dzyaloshinskii-Moriya interaction (DMI). Additionally, it has been recently observed that DMI may also promote vector spin chirality along the third dimension, coupling spins in different magnetic layers via non-magnetic spacer layers, an effect referred to as interlayer DMI (IL-DMI). This interaction holds promise for 3D nanomagnetism, from the creation of 3D spin structures such as hopfions to new forms of magnetic functionality in the vertical direction via remote control of chiral spin states. Here, we investigate via magnetic X-ray scattering and imaging techniques the chiral nature of orthogonal magnetic states that form in a synthetic antiferromagnet with IL-DMI. We find that the vector spin chirality of the textures formed in an in-plane layer is determined by the net out-of-plane spin configuration of a neighboring layer, leading as a result to complex spin states across a metallic interface where the overall scalar spin chirality is preserved. This work thus uncovers a new flavor of chiral interlayer interactions, demonstrating new ways to control magnetic chirality in three dimensions.
- H. Ishizuka and N. Nagaosa, “Anomalous electrical magnetochiral effect by chiral spin-cluster scattering,” Nature Communications 11, 2986 (2020).
- S.-H. Yang, R. Naaman, Y. Paltiel, and S. S. Parkin, “Chiral spintronics,” Nature Reviews Physics 3, 328–343 (2021).
- R. Naaman and D. H. Waldeck, “Spintronics and chirality: Spin selectivity in electron transport through chiral molecules,” Annual review of physical chemistry 66, 263–281 (2015).
- T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Physical review 120, 91 (1960).
- J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2010).
- A. Crépieux and C. Lacroix, “Dzyaloshinsky–moriya interactions induced by symmetry breaking at a surface,” Journal of magnetism and magnetic materials 182, 341–349 (1998).
- A. Hoffmann and S. D. Bader, “Opportunities at the frontiers of spintronics,” Physical Review Applied 4, 047001 (2015).
- D.-Y. Kim, M.-H. Park, Y.-K. Park, J.-S. Kim, Y.-S. Nam, D.-H. Kim, S.-G. Je, H.-C. Choi, B.-C. Min, and S.-B. Choe, “Chirality-induced antisymmetry in magnetic domain wall speed,” NPG Asia Materials 10, e464–e464 (2018).
- F. Ajejas, V. Křižáková, D. de Souza Chaves, J. Vogel, P. Perna, R. Guerrero, A. Gudin, J. Camarero, and S. Pizzini, “Tuning domain wall velocity with dzyaloshinskii-moriya interaction,” Applied Physics Letters 111 (2017).
- Y. Tokura and N. Kanazawa, “Magnetic skyrmion materials,” Chemical Reviews 121, 2857–2897 (2020).
- W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, “Skyrmion-electronics: An overview and outlook,” Proceedings of the IEEE 104, 2040–2061 (2016).
- S. Hayami, “Skyrmion crystal and spiral phases in centrosymmetric bilayer magnets with staggered dzyaloshinskii-moriya interaction,” Physical Review B 105, 014408 (2022).
- K. Fujiwara, Y. Kato, T. Seki, K. Nomura, K. Takanashi, Y. Motome, and A. Tsukazaki, “Tuning scalar spin chirality in ultrathin films of the kagome-lattice ferromagnet fe3sn,” Communications Materials 2, 113 (2021).
- S. Grytsiuk, J.-P. Hanke, M. Hoffmann, J. Bouaziz, O. Gomonay, G. Bihlmayer, S. Lounis, Y. Mokrousov, and S. Blügel, “Topological–chiral magnetic interactions driven by emergent orbital magnetism,” Nature communications 11, 511 (2020).
- H. Ishizuka and N. Nagaosa, “Spin chirality induced skew scattering and anomalous hall effect in chiral magnets,” Science advances 4, eaap9962 (2018).
- A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. Niklowitz, and P. Böni, “Topological hall effect in the a phase of mnsi,” Physical review letters 102, 186602 (2009).
- A. Fernández-Pacheco, E. Vedmedenko, F. Ummelen, R. Mansell, D. Petit, and R. P. Cowburn, “Symmetry-breaking interlayer dzyaloshinskii–moriya interactions in synthetic antiferromagnets,” Nature Materials 18, 679–684 (2019).
- E. Y. Vedmedenko, P. Riego, J. A. Arregi, and A. Berger, “Interlayer dzyaloshinskii-moriya interactions,” Physical Review Letters 122, 257202 (2019).
- D.-S. Han, K. Lee, J.-P. Hanke, Y. Mokrousov, K.-W. Kim, W. Yoo, Y. L. Van Hees, T.-W. Kim, R. Lavrijsen, C.-Y. You, et al., “Long-range chiral exchange interaction in synthetic antiferromagnets,” Nature Materials 18, 703–708 (2019).
- Z. Wang, P. Li, M. Fattouhi, Y. Yao, Y. L. Van Hees, C. F. Schippers, X. Zhang, R. Lavrijsen, F. Garcia-Sanchez, E. Martinez, et al., “Field-free spin-orbit torque switching of synthetic antiferromagnet through interlayer dzyaloshinskii-moriya interactions,” Cell Reports Physical Science 4 (2023).
- M. Sacchi, N. Jaouen, H. Popescu, R. Gaudemer, J. Tonnerre, S. Chiuzbaian, C. Hague, A. Delmotte, J. Dubuisson, G. Cauchon, et al., “The sextants beamline at soleil: a new facility for elastic, inelastic and coherent scattering of soft x-rays,” in Journal of Physics: Conference Series, Vol. 425 (IOP Publishing, 2013) p. 072018.
- H. Durr, E. Dudzik, S. Dhesi, J. Goedkoop, G. Van der Laan, M. Belakhovsky, C. Mocuta, A. Marty, and Y. Samson, “Chiral magnetic domain structures in ultrathin fepd films,” Science 284, 2166–2168 (1999).
- J.-Y. Chauleau, W. Legrand, N. Reyren, D. Maccariello, S. Collin, H. Popescu, K. Bouzehouane, V. Cros, N. Jaouen, and A. Fert, “Chirality in magnetic multilayers probed by the symmetry and the amplitude of dichroism in x-ray resonant magnetic scattering,” Physical Review Letters 120, 037202 (2018).
- M. R. McCarter, K. T. Kim, V. A. Stoica, S. Das, C. Klewe, E. P. Donoway, D. M. Burn, P. Shafer, F. Rodolakis, M. A. Gonçalves, et al., “Structural chirality of polar skyrmions probed by resonant elastic x-ray scattering,” Physical Review Letters 129, 247601 (2022).
- K. T. Kim, M. R. McCarter, V. A. Stoica, S. Das, C. Klewe, E. P. Donoway, D. M. Burn, P. Shafer, F. Rodolakis, M. A. Gonçalves, et al., “Chiral structures of electric polarization vectors quantified by x-ray resonant scattering,” Nature Communications 13, 1769 (2022).
- L. Aballe, M. Foerster, E. Pellegrin, J. Nicolas, and S. Ferrer, “The alba spectroscopic leem-peem experimental station: layout and performance,” Journal of synchrotron radiation 22, 745–752 (2015).
- M. Foerster, J. Prat, V. Massana, N. Gonzalez, A. Fontsere, B. Molas, O. Matilla, E. Pellegrin, and L. Aballe, “Custom sample environments at the alba xpeem,” Ultramicroscopy 171, 63–69 (2016).
- M. A. Cascales Sandoval, A. Hierro-Rodríguez, S. Ruiz-Gómez, L. Skoric, C. Donnelly, M. A. Niño, E. Y. Vedmedenko, D. McGrouther, S. McVitie, S. Flewett, N. Jaouen, M. Foerster, and A. Fernández-Pacheco, “Observation and formation mechanism of 360° domain wall rings in synthetic anti-ferromagnets with interlayer chiral interactions,” Applied Physics Letters 123, 172407 (2023), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0158119/18185250/172407_1_5.0158119.pdf .
- S. Ruiz-Gómez, L. Pérez, A. Mascaraque, A. Quesada, P. Prieto, I. Palacio, L. Martín-García, M. Foerster, L. Aballe, and J. de la Figuera, “Geometrically defined spin structures in ultrathin fe 3 o 4 with bulk like magnetic properties,” Nanoscale 10, 5566–5573 (2018).
- M. Ghidini, F. Maccherozzi, S. S. Dhesi, and N. D. Mathur, “Xpeem and mfm imaging of ferroic materials,” Advanced Electronic Materials 8, 2200162 (2022).
- S. Flewett, E. Burgos-Parra, M. G. Strelow, Y. Sassi, C. Léveillé, F. Ajejas, N. Reyren, and N. Jaouen, “General treatment of off-specular resonant soft x-ray magnetic scattering using the distorted-wave born approximation: numerical algorithm and experimental studies with hybrid chiral domain structures,” Physical Review B 103, 184401 (2021).
- D. Smith and K. Harte, “Noncoherent switching in permalloy films,” Journal of Applied Physics 33, 1399–1413 (1962).
- L. Heyderman, H. Niedoba, H. Gupta, and I. Puchalska, “360° and 0° walls in multilayer permalloy films,” Journal of Magnetism and Magnetic Materials 96, 125–136 (1991).
- X. Portier and A. Petford-Long, “The formation of 360 domain walls in magnetic tunnel junction elements,” Applied Physics Letters 76, 754–756 (2000).
- C. O. Avci, C.-H. Lambert, G. Sala, and P. Gambardella, “Chiral coupling between magnetic layers with orthogonal magnetization,” Physical Review Letters 127, 167202 (2021).
- P. M. Levy and A. Fert, “Anisotropy induced by nonmagnetic impurities in cu mn spin-glass alloys,” Physical Review B 23, 4667 (1981).
- M. dos Santos Dias, S. Brinker, A. Lászlóffy, B. Nyári, S. Blügel, L. Szunyogh, and S. Lounis, “Proper and improper chiral magnetic interactions,” Physical Review B 103, L140408 (2021).
- S. Brinker, M. d. S. Dias, and S. Lounis, “The chiral biquadratic pair interaction,” New journal of physics 21, 083015 (2019).
- B. Yang, Q. Cui, J. Liang, M. Chshiev, and H. Yang, “Reversible control of dzyaloshinskii-moriya interaction at the graphene/co interface via hydrogen absorption,” Physical Review B 101, 014406 (2020).
- G. Chen, M. Robertson, M. Hoffmann, C. Ophus, A. L. F. Cauduro, R. L. Conte, H. Ding, R. Wiesendanger, S. Blügel, A. K. Schmid, et al., “Observation of hydrogen-induced dzyaloshinskii-moriya interaction and reversible switching of magnetic chirality,” Physical Review X 11, 021015 (2021).
- C. Deger, “Strain-enhanced dzyaloshinskii–moriya interaction at co/pt interfaces,” Scientific reports 10, 12314 (2020).
- H. Yang, O. Boulle, V. Cros, A. Fert, and M. Chshiev, “Controlling dzyaloshinskii-moriya interaction via chirality dependent atomic-layer stacking, insulator capping and electric field,” Scientific reports 8, 12356 (2018).
- F. Kammerbauer, W.-Y. Choi, F. Freimuth, K. Lee, R. Frömter, D.-S. Han, R. Lavrijsen, H. J. Swagten, Y. Mokrousov, and M. Kläui, “Controlling the interlayer dzyaloshinskii–moriya interaction by electrical currents,” Nano Letters 23, 7070–7075 (2023).
- J. Stöhr and H. C. Siegmann, “Magnetism,” Solid-State Sciences. Springer, Berlin, Heidelberg 5, 236 (2006).
- M. A. C. Sandoval, A. Hierro-Rodríguez, S. Ruiz-Gómez, L. Skoric, C. Donnelly, M. A. Niño, D. McGrouther, S. McVitie, S. Flewett, N. Jaouen, R. Belkhou, M. Foerster, and A. Fernández-Pacheco, “3d reconstruction of the magnetization vector via xmcd-peem,” (2023), arXiv:2305.09590 [cond-mat.mes-hall] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.