Papers
Topics
Authors
Recent
2000 character limit reached

LLM-aided explanations of EDA synthesis errors (2404.07235v2)

Published 7 Apr 2024 in cs.AR, cs.AI, cs.PL, and cs.SE

Abstract: Training new engineers in digital design is a challenge, particularly when it comes to teaching the complex electronic design automation (EDA) tooling used in this domain. Learners will typically deploy designs in the Verilog and VHDL hardware description languages to Field Programmable Gate Arrays (FPGAs) from Altera (Intel) and Xilinx (AMD) via proprietary closed-source toolchains (Quartus Prime and Vivado, respectively). These tools are complex and difficult to use -- yet, as they are the tools used in industry, they are an essential first step in this space. In this work, we examine how recent advances in artificial intelligence may be leveraged to address aspects of this challenge. Specifically, we investigate if LLMs, which have demonstrated text comprehension and question-answering capabilities, can be used to generate novice-friendly explanations of compile-time synthesis error messages from Quartus Prime and Vivado. To perform this study we generate 936 error message explanations using three OpenAI LLMs over 21 different buggy code samples. These are then graded for relevance and correctness, and we find that in approximately 71% of cases the LLMs give correct & complete explanations suitable for novice learners.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. S. A. Edwards, “Experiences teaching an FPGA-based embedded systems class,” ACM SIGBED Review, vol. 2, no. 4, pp. 56–62, Oct. 2005. [Online]. Available: https://dl.acm.org/doi/10.1145/1121812.1121823
  2. S. Pasricha, “Embedded Systems Education in the 2020s: Challenges, Reflections, and Future Directions,” in Proceedings of the Great Lakes Symposium on VLSI 2022, ser. GLSVLSI ’22.   New York, NY, USA: Association for Computing Machinery, Jun. 2022, pp. 519–524. [Online]. Available: https://dl.acm.org/doi/10.1145/3526241.3530348
  3. M. A. Cherney, “U.S. will be short 67,000 chip workers by 2030, industry group says,” Reuters, Jul. 2023. [Online]. Available: https://www.reuters.com/technology/us-will-be-short-67000-chip-workers-by-2030-industry-group-says-2023-07-25/
  4. B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and C. Mooney, “Effective compiler error message enhancement for novice programming students,” Computer Science Education, vol. 26, no. 2-3, pp. 148–175, Jul. 2016. [Online]. Available: https://doi.org/10.1080/08993408.2016.1225464
  5. I. Karvelas, A. Li, and B. A. Becker, “The Effects of Compilation Mechanisms and Error Message Presentation on Novice Programmer Behavior,” in Proceedings of the 51st ACM Technical Symposium on Computer Science Education, ser. SIGCSE ’20.   New York, NY, USA: Association for Computing Machinery, Feb. 2020, pp. 759–765. [Online]. Available: https://dl.acm.org/doi/10.1145/3328778.3366882
  6. M. Ben-Ari, “Constructivism in Computer Science Education,” Journal of Computers in Mathematics and Science Teaching, vol. 20, no. 1, pp. 45–73, 2001, publisher: Association for the Advancement of Computing in Education (AACE). [Online]. Available: https://www.learntechlib.org/primary/p/8505/
  7. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35.   Curran Associates, Inc., 2022, pp. 27 730–27 744. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
  8. OpenAI, “ChatGPT: Optimizing Language Models for Dialogue,” Nov. 2022. [Online]. Available: https://openai.com/blog/chatgpt/
  9. H. Pearce, B. Tan, and R. Karri, “DAVE: Deriving Automatically Verilog from English,” in Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD.   Virtual Event Iceland: ACM, Nov. 2020, pp. 27–32. [Online]. Available: https://dl.acm.org/doi/10.1145/3380446.3430634
  10. S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg, “Benchmarking Large Language Models for Automated Verilog RTL Code Generation,” in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Apr. 2023, pp. 1–6, iSSN: 1558-1101. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10137086
  11. S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and S. Garg, “VeriGen: A Large Language Model for Verilog Code Generation,” ACM Transactions on Design Automation of Electronic Systems, Feb. 2024, just Accepted. [Online]. Available: https://dl.acm.org/doi/10.1145/3643681
  12. M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Invited Paper: VerilogEval: Evaluating Large Language Models for Verilog Code Generation,” in 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), Oct. 2023, pp. 1–8, iSSN: 1558-2434. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10323812
  13. B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “On Hardware Security Bug Code Fixes By Prompting Large Language Models,” IEEE Transactions on Information Forensics and Security, pp. 1–1, 2024, conference Name: IEEE Transactions on Information Forensics and Security. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10462177
  14. R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and J. Rajendran, “(Security) Assertions by Large Language Models,” IEEE Transactions on Information Forensics and Security, pp. 1–1, 2024, conference Name: IEEE Transactions on Information Forensics and Security. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10458667
  15. M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben, H. Anand, S. Banerjee, I. Bayraktaroglu, B. Bhaskaran, B. Catanzaro, A. Chaudhuri, S. Clay, B. Dally, L. Dang, P. Deshpande, S. Dhodhi, S. Halepete, E. Hill, J. Hu, S. Jain, B. Khailany, K. Kunal, X. Li, H. Liu, S. Oberman, S. Omar, S. Pratty, J. Raiman, A. Sarkar, Z. Shao, H. Sun, P. P. Suthar, V. Tej, K. Xu, and H. Ren, “ChipNeMo: Domain-Adapted LLMs for Chip Design,” Nov. 2023, arXiv:2311.00176 [cs]. [Online]. Available: http://arxiv.org/abs/2311.00176
  16. J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-Chat: Challenges and Opportunities in Conversational Hardware Design,” in 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD), Sep. 2023, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/10299874
  17. E. Kasneci, K. Sessler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier, S. Krusche, G. Kutyniok, T. Michaeli, C. Nerdel, J. Pfeffer, O. Poquet, M. Sailer, A. Schmidt, T. Seidel, M. Stadler, J. Weller, J. Kuhn, and G. Kasneci, “ChatGPT for good? On opportunities and challenges of large language models for education,” Learning and Individual Differences, vol. 103, p. 102274, Apr. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1041608023000195
  18. R. Dijkstra, Z. Genç, S. Kayal, J. Kamps, and others, “Reading Comprehension Quiz Generation using Generative Pre-trained Transformers,” 2022. [Online]. Available: https://e.humanities.uva.nl/publications/2022/dijk_read22.pdf
  19. E. Gabajiwala, P. Mehta, R. Singh, and R. Koshy, “Quiz Maker: Automatic Quiz Generation from Text Using NLP,” in Futuristic Trends in Networks and Computing Technologies, ser. Lecture Notes in Electrical Engineering, P. K. Singh, S. T. Wierzchoń, J. K. Chhabra, and S. Tanwar, Eds.   Singapore: Springer Nature, 2022, pp. 523–533.
  20. S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam, “ChatGPT and Software Testing Education: Promises & Perils,” in 2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Apr. 2023, pp. 4130–4137, iSSN: 2159-4848. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10132255
  21. B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather, and E. A. Santos, “Programming Is Hard - Or at Least It Used to Be: Educational Opportunities and Challenges of AI Code Generation,” in Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, ser. SIGCSE 2023.   New York, NY, USA: Association for Computing Machinery, Mar. 2023, pp. 500–506. [Online]. Available: https://dl.acm.org/doi/10.1145/3545945.3569759
  22. P. Denny, V. Kumar, and N. Giacaman, “Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language,” in Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, ser. SIGCSE 2023.   New York, NY, USA: Association for Computing Machinery, Mar. 2023, pp. 1136–1142. [Online]. Available: https://dl.acm.org/doi/10.1145/3545945.3569823
  23. S. MacNeil, A. Tran, J. Leinonen, P. Denny, J. Kim, A. Hellas, S. Bernstein, and S. Sarsa, “Automatically Generating CS Learning Materials with Large Language Models,” in Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 2, Mar. 2022, pp. 1176–1176, arXiv:2212.05113 [cs]. [Online]. Available: http://arxiv.org/abs/2212.05113
  24. S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa, P. Denny, S. Bernstein, and J. Leinonen, “Experiences from Using Code Explanations Generated by Large Language Models in a Web Software Development E-Book,” in Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, ser. SIGCSE 2023.   New York, NY, USA: Association for Computing Machinery, Mar. 2023, pp. 931–937. [Online]. Available: https://dl.acm.org/doi/10.1145/3545945.3569785
  25. S. MacNeil, A. Tran, D. Mogil, S. Bernstein, E. Ross, and Z. Huang, “Generating Diverse Code Explanations using the GPT-3 Large Language Model,” in Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 2, ser. ICER ’22, vol. 2.   New York, NY, USA: Association for Computing Machinery, Aug. 2022, pp. 37–39. [Online]. Available: https://dl.acm.org/doi/10.1145/3501709.3544280
  26. A. Taylor, A. Vassar, J. Renzella, and H. Pearce, “dcc –help: Transforming the Role of the Compiler by Generating Context-Aware Error Explanations with Large Language Models,” in Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, ser. SIGCSE 2024.   New York, NY, USA: Association for Computing Machinery, Mar. 2024, pp. 1314–1320. [Online]. Available: https://dl.acm.org/doi/10.1145/3626252.3630822
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: