Papers
Topics
Authors
Recent
2000 character limit reached

Worst-Case Convergence Time of ML Algorithms via Extreme Value Theory (2404.07170v1)

Published 10 Apr 2024 in cs.SE, cs.AI, cs.LG, cs.PF, and cs.PL

Abstract: This paper leverages the statistics of extreme values to predict the worst-case convergence times of machine learning algorithms. Timing is a critical non-functional property of ML systems, and providing the worst-case converge times is essential to guarantee the availability of ML and its services. However, timing properties such as worst-case convergence times (WCCT) are difficult to verify since (1) they are not encoded in the syntax or semantics of underlying programming languages of AI, (2) their evaluations depend on both algorithmic implementations and underlying systems, and (3) their measurements involve uncertainty and noise. Therefore, prevalent formal methods and statistical models fail to provide rich information on the amounts and likelihood of WCCT. Our key observation is that the timing information we seek represents the extreme tail of execution times. Therefore, extreme value theory (EVT), a statistical discipline that focuses on understanding and predicting the distribution of extreme values in the tail of outcomes, provides an ideal framework to model and analyze WCCT in the training and inference phases of ML paradigm. Building upon the mathematical tools from EVT, we propose a practical framework to predict the worst-case timing properties of ML. Over a set of linear ML training algorithms, we show that EVT achieves a better accuracy for predicting WCCTs than relevant statistical methods such as the Bayesian factor. On the set of larger machine learning training algorithms and deep neural network inference, we show the feasibility and usefulness of EVT models to accurately predict WCCTs, their expected return periods, and their likelihood.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: