Papers
Topics
Authors
Recent
Search
2000 character limit reached

CBFKIT: A Control Barrier Function Toolbox for Robotics Applications

Published 10 Apr 2024 in cs.RO, cs.SY, and eess.SY | (2404.07158v1)

Abstract: This paper introduces CBFKit, a Python/ROS toolbox for safe robotics planning and control under uncertainty. The toolbox provides a general framework for designing control barrier functions for mobility systems within both deterministic and stochastic environments. It can be connected to the ROS open-source robotics middleware, allowing for the setup of multi-robot applications, encoding of environments and maps, and integrations with predictive motion planning algorithms. Additionally, it offers multiple CBF variations and algorithms for robot control. The CBFKit is demonstrated on the Toyota Human Support Robot (HSR) in both simulation and in physical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. “ISO 22737 intelligent transport systems — low-speed automated driving (lsad) systems for predefined routes — performance requirements, system requirements and performance test procedures,” International Organization for Standardization, Tech. Rep.
  2. “ISO 34502 road vehicles — test scenarios for automated driving systems — scenario based safety evaluation framework,” International Organization for Standardization, Tech. Rep., 2022.
  3. “ISO/TS 15066 robots and robotic devices - collaborative robots,” International Organization for Standardization, Tech. Rep., 2016.
  4. C. E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, and J. Kapinski, “Requirements-driven test generation for autonomous vehicles with machine learning components,” IEEE Transactions on Intelligent Vehicles, vol. 5, pp. 265–280, 2020.
  5. D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya, X. Bruso, P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal scenario-based testing of autonomous vehicles: From simulation to the real world,” in 23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8.
  6. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in European Control Conference, 2019.
  7. A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in 53rd IEEE Conference on Decision and Control (CDC), 2014, pp. 6271–6278.
  8. W. Xiao, N. Mehdipour, A. Collin, A. Y. Bin-Nun, E. Frazzoli, R. D. Tebbens, and C. Belta, “Rule-based optimal control for autonomous driving,” in 12th ACM/IEEE International Conference on Cyber-Physical Systems, p. 143–154.
  9. S. He, J. Zeng, B. Zhang, and K. Sreenath, “Rule-based safety-critical control design using control barrier functions with application to autonomous lane change,” in American Control Conference (ACC), 2021, pp. 178–185.
  10. T. G. Molnar, A. Alan, A. K. Kiss, A. D. Ames, and G. Orosz, “Input-to-state safety with input delay in longitudinal vehicle control,” IFAC-PapersOnLine, vol. 55, no. 36, pp. 312–317, 2022, 17th IFAC Workshop on Time Delay Systems.
  11. W. Shaw-Cortez, C. K. Verginis, and D. V. Dimarogonas, “Safe, passive control for mechanical systems with application to physical human-robot interactions,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 3836–3842.
  12. A. Singletary, W. Guffey, T. G. Molnar, R. Sinnet, and A. D. Ames, “Safety-critical manipulation for collision-free food preparation,” vol. 7, no. 4, 2022.
  13. F. Ferraguti, C. T. Landi, S. Costi, M. Bonfe, S. Farsoni, C. Secchi, and C. Fantuzzi, “Safety barrier functions and multi-camera tracking for human–robot shared environment,” Robotics and Autonomous Systems, vol. 124, 2020.
  14. H. Parwana, A. Mustafa, and D. Panagou, “Trust-based rate-tunable control barrier functions for non-cooperative multi-agent systems,” in IEEE 61st Conference on Decision and Control (CDC), pp. 2222–2229.
  15. L. Lindemann and D. V. Dimarogonas, “Control barrier functions for multi-agent systems under conflicting local signal temporal logic tasks,” IEEE Control Systems Letters, vol. 3, no. 3, pp. 757–762, 2019.
  16. U. Mehmood, S. Roy, A. Damare, R. Grosu, S. A. Smolka, and S. D. Stoller, “A distributed simplex architecture for multi-agent systems,” Journal of Systems Architecture, vol. 134, 2023.
  17. Y. Emam, P. Glotfelter, S. Wilson, G. Notomista, and M. Egerstedt, “Data-driven robust barrier functions for safe, long-term operation,” IEEE Transactions on Robotics, vol. 38, no. 3, pp. 1671–1685, 2022.
  18. K. Garg and D. Panagou, “Control-lyapunov and control-barrier functions based quadratic program for spatio-temporal specifications,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 1422–1429.
  19. P. Braun, C. M. Kellett, and L. Zaccarian, “Complete control lyapunov functions: Stability under state constraints,” in 11th IFAC Symposium on Nonlinear Control Systems, 2019.
  20. Z. Wu, F. Albalawi, Z. Zhang, J. Zhang, H. Durand, and P. D. Christofides, “Control lyapunov-barrier function-based model predictive control of nonlinear systems,” Automatica, vol. 109, p. 108508, 2019.
  21. Y. Meng and J. Liu, “Lyapunov-barrier characterization of robust reach–avoid–stay specifications for hybrid systems,” Nonlinear Analysis: Hybrid Systems, vol. 49, p. 101340, 2023.
  22. P. Wieland and F. Allgower, “Constructive safety using control barrier functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467, 2007, 7th IFAC Symposium on Nonlinear Control Systems.
  23. S. Yaghoubi, G. Fainekos, and S. Sankaranarayanan, “Training neural network controllers from control barrier functions in the presence of disturbances,” in IEEE Intelligent Transportation Systems Conference (ITSC), 2020.
  24. A. Ahmad, C. Belta, and R. Tron, “Adaptive sampling-based motion planning with control barrier functions,” in IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 4513–4518.
  25. K. Majd, S. Yaghoubi, T. Yamaguchi, B. Hoxha, D. Prokhorov, and G. Fainekos, “Safe navigation in human occupied environments using sampling and control barrier functions,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
  26. M. Black, M. Jankovic, A. Sharma, and D. Panagou, “Future-focused control barrier functions for autonomous vehicle control,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 3324–3331.
  27. J. Breeden and D. Panagou, “Predictive control barrier functions for online safety critical control,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 924–931.
  28. J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive control with discrete-time control barrier function,” in American Control Conference (ACC), 2021, pp. 3882–3889.
  29. A. S. Lafmejani, S. Berman, and G. Fainekos, “Nmpc-lbf: Nonlinear mpc with learned barrier function for decentralized safe navigation of multiple robots in unknown environments,” in IEEE Conference on Robotics and Automation, 2022.
  30. R. Grandia, A. J. Taylor, A. Singletary, M. Hutter, and A. D. Ames, “Nonlinear model predictive control of roboticsystems with control lyapunov functions,” in Robotics: Science and Systems, 2020.
  31. S. Yaghoubi, K. Majd, G. Fainekos, T. Yamaguchi, D. Prokhorov, and B. Hoxha, “Risk-bounded control using stochastic barrier functions,” IEEE Control Systems Letters, vol. 5, 2021.
  32. S. Yaghoubi, G. Fainekos, T. Yamaguchi, D. Prokhorov, and B. Hoxha, “Risk-bounded control with kalman filtering and stochastic barrier functions,” in IEEE Conference on Decision and Control, 2021.
  33. M. Black, G. Fainekos, B. Hoxha, D. Prokhorov, and D. Panagou, “Safety under uncertainty: Tight bounds with risk-aware control barrier functions,” in IEEE International Conference on Robotics and Automation (ICRA), 2023.
  34. D. R. Agrawal and D. Panagou, “Safe and robust observer-controller synthesis using control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 127–132, 2022.
  35. J. Breeden, K. Garg, and D. Panagou, “Control barrier functions in sampled-data systems,” IEEE Control Systems Letters, vol. 6, pp. 367–372, 2021.
  36. M. Black and D. Panagou, “Safe control design for unknown nonlinear systems with koopman-based fixed-time identification,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 369–11 376, 2023.
  37. Q. Thibeault, J. Anderson, A. Chandratre, G. Pedrielli, and G. Fainekos, “PSY-TaLiRo: A python toolbox for search-based test generation for cyber-physical systems,” in Formal Methods for Industrial Critical Systems (FMICS), 2021.
  38. J. Cralley, O. Spantidi, B. Hoxha, and G. Fainekos, “Tltk: A toolbox for parallel robustness computation of temporal logic specifications,” in Runtime Verification: 20th International Conference, RV 2020, Los Angeles, CA, USA, October 6–9, 2020, Proceedings 20.   Springer International Publishing, 2020, pp. 404–416.
  39. D. Nickovic and T. Yamaguchi, “RTAMT: Online robustness monitors from STL,” in Automated Technology for Verification and Analysis (ATVA), ser. LNCS, vol. 12302.   Springer, 2020, pp. 564–571.
  40. T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase, “Development of human support robot as the research platform of a domestic mobile manipulator,” ROBOMECH Journal, vol. 6, no. 1, 2019.
  41. F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
  42. M. Jankovic, “Robust control barrier functions for constrained stabilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367, 2018.
  43. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018. [Online]. Available: http://github.com/google/jax
  44. A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy: symbolic computing in python,” PeerJ Computer Science, vol. 3, p. e103, Jan. 2017. [Online]. Available: https://doi.org/10.7717/peerj-cs.103
  45. Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 322–328.
  46. W. Xiao and C. Belta, “Control barrier functions for systems with high relative degree,” in 2019 IEEE 58th conference on decision and control (CDC).   IEEE, 2019, pp. 474–479.
  47. M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, and J.-P. Vert, “Efficient and modular implicit differentiation,” Advances in neural information processing systems, vol. 35, pp. 5230–5242, 2022.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 15 likes about this paper.