Logarithmic-Depth Quantum Circuits for Hamming Weight Projections
Abstract: A pure state of fixed Hamming weight is a superposition of computational basis states such that each bitstring in the superposition has the same number of ones. Given a Hilbert space of the form $\mathcal{H} = (\mathbb{C}_2){\otimes n}$, or an $n$-qubit system, the identity operator can be decomposed as a sum of projectors onto subspaces of fixed Hamming weight. In this work, we propose several quantum algorithms that realize a coherent Hamming weight projective measurement on an input pure state, meaning that the post-measurement state of the algorithm is the projection of the input state onto the corresponding subspace of fixed Hamming weight. We analyze a depth-width trade-off for the corresponding quantum circuits, allowing for a depth reduction of the circuits at the cost of more control qubits. For an $n$-qubit input, the depth-optimal algorithm uses $O(n)$ control qubits and the corresponding circuit has depth $O(\log (n))$, assuming that we have the ability to perform qubit resets. Furthermore, the proposed algorithm construction uses only one- and two-qubit gates.
- T. W. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications (Academic Press, 2017).
- K. Li, H. Chen, and L. Qu, Generalized Hamming weights of linear codes from cryptographic functions, Advances in Mathematics of Communications 16, 859 (2022).
- T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in Telecommunications and Signal Processing (Wiley-Interscience, USA, 2006).
- V. K. Wei, Generalized Hamming weights for linear codes, IEEE Transactions on Information Theory 37, 1412 (1991).
- I. Wegener, The complexity of symmetric boolean functions, in Computation Theory and Logic, edited by E. Börger (Springer Berlin Heidelberg, Berlin, Heidelberg, 1987) pp. 433–442.
- M. L. LaBorde, S. Rethinasamy, and M. M. Wilde, Testing symmetry on quantum computers, Quantum 7, 1120 (2023).
- H. S. Warren, Hacker’s Delight, 2nd ed. (Pearson Education, 2012).
- P. Kaye and M. Mosca, Quantum networks for concentrating entanglement, Journal of Physics A: Mathematical and General 34, 6939 (2001).
- M. S. Mirkamali, D. G. Cory, and J. Emerson, Entanglement of two noninteracting qubits via a mesoscopic system, Physical Review A 98, 042327 (2018).
- M. S. Mirkamali, Resources Needed for Entangling Two Qubits through an Intermediate Mesoscopic System, Ph.D. thesis, University of Waterloo (2019).
- M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, 2017).
- F. Salek and A. Winter, Multi-user distillation of common randomness and entanglement from quantum states, IEEE Transactions on Information Theory 68, 976 (2022).
- A. Winter and D. Yang, Operational resource theory of coherence, Physical Review Letters 116, 120404 (2016).
- Y.-C. Shih, M.-H. Hsieh, and H.-Y. Wei, Multicasting homogeneous and heterogeneous quantum states in quantum networks, Nano Communication Networks 1, 273 (2010).
- M. Plesch and V. Bužek, Efficient compression of quantum information, Physical Review A 81, 032317 (2010).
- W. Zi, J. Nie, and X. Sun, Shallow quantum circuit implementation of symmetric functions with limited ancillary qubits (2024), arXiv:2404.06052 [quant-ph] .
- M. Tomamichel, Quantum Information Processing with Finite Resources: Mathematical Foundations, Vol. 5 (Springer, 2015).
- Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace estimation in constant quantum depth, Quantum 8, 1220 (2024).
- P. W. Shor, Fault-tolerant quantum computation, in Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS ’96 (IEEE Computer Society, USA, 1996) p. 56, arXiv:quant-ph/9605011.
- D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Quantum Information Science and Its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics 68, 13 (2010), arXiv:0904.2557 .
- R. B. Griffiths and C.-S. Niu, Semiclassical Fourier transform for quantum computation, Physical Review Letters 76, 3228 (1996).
- J. A. Smolin, G. Smith, and A. Vargo, Oversimplifying quantum factoring, Nature 499, 163 (2013), arXiv:1301.7007 .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.