Papers
Topics
Authors
Recent
2000 character limit reached

Logarithmic-Depth Quantum Circuits for Hamming Weight Projections

Published 10 Apr 2024 in quant-ph | (2404.07151v3)

Abstract: A pure state of fixed Hamming weight is a superposition of computational basis states such that each bitstring in the superposition has the same number of ones. Given a Hilbert space of the form $\mathcal{H} = (\mathbb{C}_2){\otimes n}$, or an $n$-qubit system, the identity operator can be decomposed as a sum of projectors onto subspaces of fixed Hamming weight. In this work, we propose several quantum algorithms that realize a coherent Hamming weight projective measurement on an input pure state, meaning that the post-measurement state of the algorithm is the projection of the input state onto the corresponding subspace of fixed Hamming weight. We analyze a depth-width trade-off for the corresponding quantum circuits, allowing for a depth reduction of the circuits at the cost of more control qubits. For an $n$-qubit input, the depth-optimal algorithm uses $O(n)$ control qubits and the corresponding circuit has depth $O(\log (n))$, assuming that we have the ability to perform qubit resets. Furthermore, the proposed algorithm construction uses only one- and two-qubit gates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. T. W. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications (Academic Press, 2017).
  2. K. Li, H. Chen, and L. Qu, Generalized Hamming weights of linear codes from cryptographic functions, Advances in Mathematics of Communications 16, 859 (2022).
  3. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in Telecommunications and Signal Processing (Wiley-Interscience, USA, 2006).
  4. V. K. Wei, Generalized Hamming weights for linear codes, IEEE Transactions on Information Theory 37, 1412 (1991).
  5. I. Wegener, The complexity of symmetric boolean functions, in Computation Theory and Logic, edited by E. Börger (Springer Berlin Heidelberg, Berlin, Heidelberg, 1987) pp. 433–442.
  6. M. L. LaBorde, S. Rethinasamy, and M. M. Wilde, Testing symmetry on quantum computers, Quantum 7, 1120 (2023).
  7. H. S. Warren, Hacker’s Delight, 2nd ed. (Pearson Education, 2012).
  8. P. Kaye and M. Mosca, Quantum networks for concentrating entanglement, Journal of Physics A: Mathematical and General 34, 6939 (2001).
  9. M. S. Mirkamali, D. G. Cory, and J. Emerson, Entanglement of two noninteracting qubits via a mesoscopic system, Physical Review A 98, 042327 (2018).
  10. M. S. Mirkamali, Resources Needed for Entangling Two Qubits through an Intermediate Mesoscopic System, Ph.D. thesis, University of Waterloo (2019).
  11. M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, 2017).
  12. F. Salek and A. Winter, Multi-user distillation of common randomness and entanglement from quantum states, IEEE Transactions on Information Theory 68, 976 (2022).
  13. A. Winter and D. Yang, Operational resource theory of coherence, Physical Review Letters 116, 120404 (2016).
  14. Y.-C. Shih, M.-H. Hsieh, and H.-Y. Wei, Multicasting homogeneous and heterogeneous quantum states in quantum networks, Nano Communication Networks 1, 273 (2010).
  15. M. Plesch and V. Bužek, Efficient compression of quantum information, Physical Review A 81, 032317 (2010).
  16. W. Zi, J. Nie, and X. Sun, Shallow quantum circuit implementation of symmetric functions with limited ancillary qubits (2024), arXiv:2404.06052 [quant-ph] .
  17. M. Tomamichel, Quantum Information Processing with Finite Resources: Mathematical Foundations, Vol. 5 (Springer, 2015).
  18. Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace estimation in constant quantum depth, Quantum 8, 1220 (2024).
  19. P. W. Shor, Fault-tolerant quantum computation, in Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS ’96 (IEEE Computer Society, USA, 1996) p. 56, arXiv:quant-ph/9605011.
  20. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Quantum Information Science and Its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics 68, 13 (2010), arXiv:0904.2557 .
  21. R. B. Griffiths and C.-S. Niu, Semiclassical Fourier transform for quantum computation, Physical Review Letters 76, 3228 (1996).
  22. J. A. Smolin, G. Smith, and A. Vargo, Oversimplifying quantum factoring, Nature 499, 163 (2013), arXiv:1301.7007 .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.