Entanglement distribution through separable states via a zero-added-loss photon multiplexing inspired protocol (2404.07107v3)
Abstract: The recently proposed zero-added-loss multiplexing (ZALM) source of entangled photons enables higher efficiency in entanglement distribution than spontaneous parametric down-conversion sources and can be carried out using both space-to-ground and ground-to-ground links. We demonstrate the flexibility of ZALM architectures to be adapted to alternative entanglement distribution protocols. Focusing on the counter-intuitive result that entanglement can be generated between distant parties without using any entanglement as a resource, we analyze two protocols for entanglement distribution to memories via separable states. Modelling them in a ZALM setup, we consider the effects of noise both in the communication channels and in the memories. We thereby identify the optimal protocol to use, with respect to the highest entanglement generated, given the noise conditions of the network.
- H. Kimble, The quantum internet, Nature 453, 1023 (2008).
- S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
- J. C. Chapman and N. A. Peters, Paving the way for satellite quantum communications, APS Physics 15, 172 (2022).
- H. Ollivier and W. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. 88, 017901 (2001).
- L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. A: Math. Gen. 34, 6899 (2001).
- A. Laneve, H. McAleese, and M. Paternostro, A scheme for multipartite entanglement distribution via separable carriers, New J. Phys. 24, 123003 (2022).
- A. Streltsov, H. Kampermann, and D. Bruß, Quantum Cost for Sending Entanglement, Phys. Rev. Lett. 108, 250501 (2012).
- A. Kay, Using Separable Bell-Diagonal States to Distribute Entanglement, Phys. Rev. Lett. 109, 080503 (2012).
- A. Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett. 77, 1413 (1996).
- M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 77, 1 (1996).
- W. Dür and J. Cirac, Multiparty teleportation, J. Mod. Opt. 47, 247 (2000).
- A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998).
- M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59, 1829 (1999).
- R. Cleve, D. Gottesman, and H.-K. Lo, How to Share a Quantum Secret, Phys. Rev. Lett. 83, 648 (1999).
- M. Fitzi, N. Gisin, and U. Maurer, Quantum Solution to the Byzantine Agreement Problem, Phys. Rev. Lett. 87, 217901 (2001).
- A. Cabello, Solving the liar detection problem using the four-qubit singlet state, Phys. Rev. A 68, 012304 (2003).
- S. Pirandola, Satellite quantum communications: Fundamental bounds and practical security, Phys. Rev. Res. 3, 023130 (2021).
- T. Yu and J. Eberly, Finite-Time Disentanglement Via Spontaneous Emission, Phys. Rev. Lett. 93, 140404 (2004).
- T. Yu and J. Eberly, Sudden Death of Entanglement, Science 323, 598 (2009).
- C. Chen, E. Bersin, and D. Englund, A polarization encoded photon-to-spin interface, npj Quantum Inf. 7, 2 (2021).
- L.-M. Duan and H. Kimble, Scalable Photonic Quantum Computation through Cavity-Assisted Interactions, Phys. Rev. Lett. 92, 127902 (2004).
- L.-M. Duan, B. Wang, and H. J. Kimble, Robust quantum gates on neutral atoms with cavity-assisted photon scattering, Phys. Rev. A 72, 032333 (2005).
- J. Preskill, Lecture notes for physics 229: Quantum information and computation (1998).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.