Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Modular Vector Fields for Lattice Polarized K3 (2404.06662v1)

Published 10 Apr 2024 in math.AG and math.CV

Abstract: We consider a moduli space of lattice polarized K3 surfaces with the additional information of a frame of the trascendental cohomology with respect to the lattice polarization. This moduli space is proved to be quasi-affine, and the existence of vector fields on it, called modular vector fields, is proved. A purely algebraic version of the algebra of Siegel quasi-modular forms is obtained as the algebra of global regular functions over this moduli space, with a differential structure coming from the modular vector fields. By means of trascendental considerations we are able to obtain a differential algebra of meromorphic Siegel quasi-modular forms from the previous algebra.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Murad Alim. Algebraic structure of tt* equations for Calabi-Yau sigma models. Communications in Mathematical Physics, 2017.
  2. Gauss-Manin Lie algebra of mirror elliptic K3 surfaces. Mathematical Research Letters, 2021.
  3. L. Baily and A. Borel. Compactification of arithmetic quotients of bounded symmetric domains. Annals of Mathematics, 1966.
  4. P. Bender. Presentation of symplectic group Sp(4,Z) with 2 generatrices and 8 definitive relations. Journal of Algebra 65, no. 2, 1980.
  5. H. Cartan. Quotients d’un espace analytique par un groupe d’automorphismes. Algebraic Geometry and Topology, 1957.
  6. Lattice polarized K3 surfaces and Siegel modular forms. Journal of Mathematical Sciences, 2010.
  7. Period Mappings and Period Domains. Cambridge Studies in Advanced Mathematics 85. Cambridge University Press, 2003.
  8. Pierre Deligne. Théorie de Hodge III. Publ. Math. I.H.E.S., 1972.
  9. Humbert surfaces and the moduli of lattice polarized K3 surfaces. String-Math 2014, American Mathematical Society, Proceedings of Symposia in Pure Mathematics 93, 124-155., 2016.
  10. Tiago Fonseca. Higher Ramanujan equations I: moduli stacks of abelian varieties and higher Ramanujan vector fields. arXiv:1612.05081, 2019.
  11. TJD Fonseca. Higher ramanujan equations and periods of abelian varieties. Memoirs of the American Mathematical Society, 2020.
  12. V. Gritsenko and V. Nikulin. Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras. Amer. J. Math. vol. 119, no. 1, 1997.
  13. H. Grauert and R. Remmert. Coherent Analytic Sheaves. Grundlehren Der Mathematischen Wissenschaften. Springer, 1984.
  14. Phillip A. Griffiths. Periods of integrals on algebraic manifolds, I. (construction and properties of the modular varieties). American Journal of Mathematics, 1968.
  15. Daniel Huybrechts. Lectures on K3 Surfaces. 2016.
  16. J. Igusa. On the ring of modular forms of degree two over ℤℤ\mathbb{Z}blackboard_Z. Amer. J. Math., 1979.
  17. Qing Liu. Algebraic Geometry and Arithmetic Curves. Oxford University Press, 2002.
  18. Hossein Movasati. Differential modular forms and some analytic relations between eisenstein series. Ramanujan Journal, 2008.
  19. Hossein Movasati. On Ramanujan relations between eisenstein series. Manuscripta Mathematica, 2012.
  20. Hossein Movasati. Quasi-modular forms attached to elliptic curves, I. Annales Mathématiques Blaise Pascal, 2012.
  21. Hossein Movasati. Quasi-modular forms attached to Hodge structures. Fields Communication Series, 2013.
  22. Hossein Movasati. Gauss-Manin connection in disguise: Calabi-Yau modular forms. International Press, 2017.
  23. Hossein Movasati. A Course in Hodge Theory: with Emphasis on Multiple Integrals. International Press of Boston, 2021.
  24. Hossein Movasati. Modular and Automorphic Forms & beyond., volume 9. World Scientific, 2021.
  25. J. H. M. Steenbrink. Mixed hodge structure on the vanishing cohomology. Symposium in Mathematics, 1976.
  26. Jean-Luois Verdier. Stratifications de Whitney et théorème de Bertini-Sard. Inventiones mathematicae, 1976.
  27. Martin Vogrin. Algebraic Structures on Moduli Spaces of Mirror Geometries. 2020.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.