On the Role of Cosmological Gravitational Particle Production in Baryogenesis (2404.06530v1)
Abstract: We investigate the generation of the baryon asymmetry within the framework of cosmological gra-vi-ta-tional particle production, employing the Bogoliubov approach. We examine two well-known baryogenesis scenarios, namely baryogenesis in Grand Unified Theories (GUT) and leptogenesis, while considering reheating temperatures sufficiently low for thermal processes to be negligible. Considering $\alpha-$attractor T-models for the inflaton potential, we demonstrate that GUT baryogenesis from scalar decays can be successful across a large range of conformal couplings with gravity, without necessitating substantial levels of CP violation. In the case of leptogenesis, we find that the reheating temperature should be $T_{\rm RH}\lesssim 10{6}~{\rm GeV}$ for right-handed neutrino masses $M_1 \lesssim 6 \times 10{12}~{\rm GeV}$ to generate the observed asymmetry.
- Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008), arXiv:0710.3755 [hep-th] .
- F. L. Bezrukov and D. S. Gorbunov, Phys. Lett. B 713, 365 (2012), arXiv:1111.4397 [hep-ph] .
- S. W. Hawking, Nature 248, 30 (1974).
- S. W. Hawking, Euclidean quantum gravity, Commun. Math. Phys. 43, 199 (1975), [,167(1975)].
- S. W. Hawking, Commun. Math. Phys. 80, 421 (1981).
- D. Hooper and G. Krnjaic, Phys. Rev. D 103, 043504 (2021), arXiv:2010.01134 [hep-ph] .
- Y. F. Perez-Gonzalez and J. Turner, Phys. Rev. D 104, 103021 (2021), arXiv:2010.03565 [hep-ph] .
- D. J. H. Chung, Phys. Rev. D 67, 083514 (2003), arXiv:hep-ph/9809489 .
- V. Kuzmin and I. Tkachev, Phys. Rev. D 59, 123006 (1999), arXiv:hep-ph/9809547 .
- Y. Mambrini and K. A. Olive, Phys. Rev. D 103, 115009 (2021), arXiv:2102.06214 [hep-ph] .
- E. W. Kolb and A. J. Long, (2023), arXiv:2312.09042 [astro-ph.CO] .
- S. Hashiba and J. Yokoyama, Phys. Lett. B 798, 135024 (2019), arXiv:1905.12423 [hep-ph] .
- N. Bernal and C. S. Fong, JCAP 06, 028 (2021), arXiv:2103.06896 [hep-ph] .
- T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).
- L. E. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2009).
- D. Z. Freedman and A. Van Proeyen, Supergravity (Cambridge Univ. Press, Cambridge, UK, 2012).
- R. Kallosh and A. Linde, JCAP 07, 002 (2013), arXiv:1306.5220 [hep-th] .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- C. S. Fong, Phys. Rev. D 103, L051705 (2021), arXiv:2012.03973 [hep-ph] .
- V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot big bang theory (World Scientific, Singapore, 2017).
- M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
- P. Di Bari and A. Riotto, Phys. Lett. B 671, 462 (2009), arXiv:0809.2285 [hep-ph] .
- S. Davidson and A. Ibarra, Phys. Lett. B 535, 25 (2002), arXiv:hep-ph/0202239 .
- J. A. Casas and A. Ibarra, Nucl. Phys. B 618, 171 (2001), arXiv:hep-ph/0103065 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.