Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

(Pseudo-)Synthetic BRST quantisation of the bosonic string and the higher quantum origin of dualities (2404.06522v7)

Published 8 Apr 2024 in physics.gen-ph

Abstract: In this article I am arguing in favour of the hypothesis that the origin of gauge and string dualities in general can be found in a higher-categorical interpretation of basic quantum mechanics. It is interesting to observe that the Galilei group has a non-trivial cohomology, while the Lorentz/Poincare group has trivial cohomology. When we constructed quantum mechanics, we noticed the non-trivial cohomology structure of the Galilei group and hence, we required for a proper quantisation procedure that would be compatible with the symmetry group of our theory, to go to a central extension of the Galilei group universal covering by co-cycle. This would be the Bargmann group. However, Nature didn't choose this path. Instead in nature, the Galilei group is not realised, while the Lorentz group is. The fact that the Galilei group has topological obstructions leads to a central charge, the mass, and a superselection rule, required to implement the Galilei symmetry, that forbids transitions between states of different mass. The topological structure of the Lorentz group however lacks such an obstruction, and hence allows for transitions between states of different mass. The connectivity structure of the Lorentz group as opposed to that of the Galilei group can be interpreted in the sense of an ER=EPR duality for the topological space associated to group cohomology. In string theory we started with the Witt algebra, and due to similar quantisation issues, we employed the central extension by co-cycle to obtain the Virasoro algebra. This is a unique extension for orientation preserving diffeomorphisms on a circle, but there is no reason to believe that, at the high energy domain in physics where this would apply, we do not have a totally different structure altogether and the degrees of freedom present there would require something vastly more general and global.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: